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Abstract

Many research articles need to provide an implementation as proof-of-concept.
Often such implementations are created as exploratory prototypes, with no in-
tention of ever making them accessible. However, if such a tool turns out to be
successful in addressing a real need, it may be useful to make it accessible to a
larger audience.

The MACH tool is a case study in unifying a set of prototypes implement-
ing advanced functions for analyzing and checking UML models with the least
possible effort. MACH provides a common user interface and shared infrastruc-
ture, integrating several independent prototypes without any changes. In this
paper, we discuss the requirements for MACH and show how they impact the
architectural design decisions.

1. Motivation

Many research articles need to provide an implementation as proof-of-concept.
For the purposes of research and publication, an exploratory prototype is often
sufficient, that is, an implementation that realizes only the bare minimum, with
little or no effort is being spent on issues such as usability, stability, portability,
extensibility, and performance. For the purpose of demonstrating the concept,
this kind of tool is adequate: it is only ever the author who will use these tools.

However, after the initial proof-of-concept implementation, other scientific
questions may arise that can only be answered by human-factors studies, such as
observing how users actually use a given tool, and scrutinizing their activities.
Or a colleague might want also use these tools and replicate results achieved
using them. Or it might be interesting to give students access to the tool, using
it in the classroom or in a project. Clearly, the initial basic tool is not up to
such challenges. Lacking the above quality attributes is a massive impediment
to evolving a mere exploratory prototype into a tool that can be used by people
other than the author.

Turning a research prototype into a ”proper” tool implies substantial effort
that the original author may not want to spend, since this is usually a pure
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engineering effort with little contribution to the research as such. In some
cases, money may not be a limiting factor, so that the development can be
outsourced to a commercial software developer, but that is a rare case indeed.
More frequently, researchers would turn such a task into a thesis project for a
Bachelor- or Master’s-student. But that is not always possible: maybe the task
is too large or too small, no appropriate student is available/willing to do it on
short notice, or a candidate does a poor job of the assignment.

In the end, all too often, the researcher may abandon a strand of research
for lack of resources. Or, he finds himself implementing a tool, which is a poor
allocation of resources if the resulting tool is intended to match the degree of
polishing seen in commercial or large-scale open-source projects. If this is the
case, how can the researcher create a decent tool quickly, and cheaply? How can
the effort of such developments be reduced while still allowing him to deploy
it to poorly qualified users, such as students? In this paper, we will show our
approach to solving this dilemma.

2. From Rationale to Architecture

When implementing a tool working on models there are three important
design decisions. First, whether the tool shall be integrated in a modeling
environment or stand-alone, and if the former, in which one. Second, what pro-
gramming language to use, in particular in the present case, when the existing
code base is in Prolog. Third, whether to create a mere command-line UI or a
fully-blown GUI.

2.1. Goals, Constraints, and Requirements

The author’s research work focuses on advanced operations on UML models
that are beyond the scope of existing modeling tools. Over the years, many small
exploratory prototypes have been created. They do not provide huge value each
on their own, but together their contribution is substantial. In creating the
MACH tool, we focused on students and scholars, not industrial users: some
understanding of models and underlying concepts is required, and we can accept
some limitations and shortcomings that would not be tolerable in commercial
tools. Observe that most of these prototypes have been implemented using the
Prolog programming language. The main rationale for choosing that particular
language is, of course, to allow rapid prototyping. Long-term usage of the
resulting code, usage by third parties, or long-term-evolution of the code base,
on the other hand, were not considered at the time of creation.

This results in three overall goals:

• Combine as many of the existing prototypes into a single tool;

• make the major functions available to students and colleagues; but

• strictly limit the effort in creating the tool to the bare minimum.
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Table 1: Requirements for MACH: RQA stands for required quality attribute, C stands for
constraint, and F stands for feature.

ID Type Description

R1 RQA sufficient usability for the intended audiences
R2 RQA high levels of portability and stability
R3 RQA easy maintenance and extension with little effort
R4 C minimum effort in creation and maintenance
R5 C existing code base is in Prolog
R6 F unifying interface for all or most of the prototypes
R7 F auxiliary functions to work with models

We translate these goals into the requirements shown in Table 1. In this
table, the requirements are classified by their type: required quality attributes
(also known as non-functional requirements), constraints, and features. In the
next section we will discuss architectural alternatives to satisfy all of these
requirements simultaneously, in a balanced way.

2.2. Implementation platform

Clearly, integrating a tool into a modeling environment provides much easier
access to other model-related capabilities, and thus promises a better blending
with the modeling process, i.e., higher usability. Also, when reusing an existing
framework such as Eclipse1 or a commercial modeling tool with an API, a
substantial benefit is to be expected from reusing the existing code base. The
down side is, of course, that the integration as such requires substantial coding
effort, and massive learning overhead is to be expected when learning to use an
existing framework. Also, using an existing framework is a substantial risk in
that things may not work as smoothly in reality as the documentation promises.
Of course, this is a constraint only when this knowledge is not present. If a
research or development group is already working on a given platform (such
as Eclipse) and already has experience in creating tools with this framework,
the additional investment is smaller or non-existent. Clearly, this is a defining
characteristic for any framework.

Obviously, creating a new modeling environment from scratch would com-
pletely negate R4. This left us with two realistic candidates to be used as an
integration framework. On the one hand, the Eclipse Rich Client Platform could
be used, a straightforward option because of its openness and widespread use in
academia, notably the model-based software development community. However,
we have witnessed many a student struggle with Eclipse. The effort of learning

1Note that refer to Eclipse here in its role as a framework (i.e., Eclipse RCP), or in its
role as a modeling tool (Eclipse plus EMF-related plug-ins), not in its role as an IDE; this
discussion is entirely unrelated to IDEs of any kind.
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to use Eclipse as a programming framework is so high, that such an investment
cannot possibly pay back for the project we consider here.

The other option was to use MagicDraw UML (MD), one of the best com-
mercial UML modeling tools on the market. Our group had used MD for a long
time with very good experiences. MD is available on all popular architectures
and comes with a great choice of features. Crucially, MD also offers an open API
which we had found stable and reasonably well-documented when exploring it.
Connecting the prototypes could be achieved using the Java-to-Prolog library
(JPL, see swi-prolog.org). An exploration project by a student showed, how-
ever, that the JPL version current at the time suffered from instability, incurring
an incalculable project risk. Furthermore, the effort required to create the user
interface was found to be rather higher than originally expected. Thus, we have
ruled both Eclipse and MD as frameworks, and decided to create a stand-alone
tool without integration.

2.3. Implementation Language

A decision for Eclipse or MD would have implied using Java, since this is the
implementation language of both of them. Since we decided for a stand-alone
solution, however, this was an open decision again. The portability requirement
(R2) ruled out using the Microsoft technology stack. Java is an obvious choice
of implementation language because of its rich ecosystem and the ability to in-
terface to Prolog code through the Java-to-Prolog library (JPL), though this
would have been a gamble on a future version fixing the bug related to the un-
derlying processor architecture of JPL. Also, Java seems to be almost canonical
for academic software development.

The other straightforward option was to use Prolog because it had been used
for creating the existing code base so there is no integration effort, no problems
can arise out of multi-language interaction problems and so on. There was no
reason to consider another obscure language like Python, Ruby, or Tcl/Tk, so
the decision was between Java and Prolog.

We anticipated additional effort from a more complex setting with two pro-
gramming languages, in particular in the long run, conflicting with requirement
R3. Thus we decided to go with Prolog as our implementation language. Since
SWI-Prolog (see swi-prolog.org) had been used all along, we kept using this
implementation.

2.4. User Interface type

Finally, we had to decide on what kind of user interface we wanted to imple-
ment. Since there are mature freely available GUI-frameworks for Prolog (e.g.,
the XPCE library for SWI-Prolog) , we still had both options at this point.

Given the usability requirement R1, many people might only ever consider
a graphical user interface. However, it is much more difficult to create a good
GUI than one would believe, and the process involves a large amount of very
dull (“boiler plate”) code. A command-line UI, on the other hand, is much
easier to realize. We also expected it to be easier to maintain since the number
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of files to touch for changes could be very much reduced (one, in fact). So, with
a view to the expected effort (requirement R4), we settled for a textual UI as
the first step, with the plan of upgrading to a UI later if this should become
necessary. So we first implemented option (E) (MACH-1). Fig. 1 visualizes the
decision making process.
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Figure 1: Architectural alternatives for addressing the requirements of MACH.

In an independent project, a student project provided as a by-product a
solution that allowed us to plug MACH-1 as-is into MagicDraw (option F in
Fig. 1), thus yielding a fully integrated version of MACH at little extra cost,
though this is currently a prototype itself, due to the shortcomings described
above. We hope a future version of JPL will enable us to achieve a higher level
of stability, and thus allow us to deploy MACH-2, too.

3. Components of MACH

In this section we describe the different tools that have been unified in
MACH. For each of them, we describe the benefit we realize by integrating
it in MACH, and what difficulty we have faced in the process of doing so.
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3.1. Model querying

Today, there are few facilities for ad-hoc querying of UML models. Basically,
modelers have to use full-text search or exhaustive browsing of models, both of
which have serious drawbacks: full text search has very low precision, exhaustive
browsing is tedious and not applicable for all but the smallest models. Some
tools also offer specific predefined queries or views, but obviously these suffer
from limited expressiveness. So, defining model query languages has attracted
some interest over the past decade. But how do they compare to each other?
Clearly, we cannot compare just one tool with another, since then we would be
(mostly) testing the tools rather than the concepts behind them. So we need a
common platform to compare different model query facilities side by side.

Given the textual UI of MACH, our approach is limited to textual query lan-
guages, but even so there are at least three candidates worth studying: full-text
search as the gold-standard, OCL as the only query language as such with a user
base worth mentioning, and MOCQL (Model Constraint and Query Language,
[5]), our own experimental model query language that shows promise to deliver
a much higher degree of usability than OCL. Integrating MOCQL into MACH
is trivial, as is implementing a full-text search facility for MACH. Integrating
existing OCL-implementations, on the other hand, is difficult if not impossible,
but creating a (simple) OCL interpreter in SWI-Prolog is a task that may be
achieved by a student in a thesis project.

A major challenge for a textual UI query facility is the integration into
(visual) modeling tools. Clearly, users want to have a convenient display of
search results, allowing to investigate the results, and navigate to their context
in the base model. MACH offers a tabular view of the query results with varying
degrees of detailedness, but navigating from MACH to a modeling tool is not
straightforward. We have solved this problem by creating a plug in to the
modeling tool of our choice that runs MACH inside it. This way, modelers can
simply click on an element displayed in MACH’s UI to navigate to the respective
model element in the modeling tool. As an added benefit, the plug in also allows
to execute queries expressed in the Visual Model Query Language (VMQL, see
[3]), another query facility we have defined before.

3.2. Size metrics

Measuring the size of the relevant artifacts clearly is of crucial importance in
turning software development from craft into engineering. Basic size metrics are
essential components in measures of productivity, actual and estimated effort,
artifact complexity, and so on. Obviously, the first challenge is to come up
with the “right” size metrics of models (see [2]), justify that it is suitable and
indeed better than alternatives, and implement it to demonstrate its capabilities.
Clearly, this research agenda requires a tool to compute different model sizes,
and easily add/modify implemented metrics. By integrating this component
into MACH, we can now very easily explore new size metrics and test their
effectiveness in class.

This application actually exhibits a drawback in our choice of architecture
since we would like to experiment with different interactive visualizations of size
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metrics, and lacking a GUI, this is difficult to do in MACH. In order to mitigate
this problem, we have provided some basic output using ASCII-graphics for
tables, histograms, and scatter-plots.

3.3. Clone detection

Model clones are unwanted duplicate model fragments. It has been argued,
that model clones have the same adversary effect on models as code clones have
on source code, possibly even more so. Thus, detecting clones is an important
task in the quality assurance of models. In [6], we have proposed an algorithm
for this problem and provided an implementation. The resulting tool had a
multitude of parameters and options, that were very difficult to use effectively.
We have isolated a configuration that strikes a good compromise for practical
purposes, hardwired it in a wrapper around the tool, and plugged it into MACH.
Using this function is trivial, and while the results may not be quite as good as
when fine-tuning all options, this is the first time such an option has been made
easily accessible to non-expert users.

3.4. Comparing models and presenting differences

Another tool we have created compares subsequent versions of a model and
allows different presentations of the result [4]. However, this cannot be satis-
factorily addressed in a stand-alone-tool since part of the quality of difference
presentation is determined by the integration with a modeling environment. By
integrating these functions into MACH, we can now study the usage effectiveness
of our approach, and explore new usage scenarios.

3.5. Infrastructure components of MACH

Apart from the features proper, MACH also provides a number of supportive
functions that are not in itself interesting, but greatly improve the practical work
with MACH.

• The first of these components is a package of functions to load models in
XMI format and covert them to an internal data structure, and provide
aliases to them such that to reduce typing effort when accessing a model.
In order to support working with aliases, there are commands for showing
and deleting aliases, individually or collectively. This is particularly im-
portant, since we frequently use long and very descriptive filenames that
are easy to mistype or forget.

• The second auxiliary component is one that provides facilities to navigate
and manage the file system, offering commands much like those well known
from UNIX command line interpreters, e.g., pwd, cd, mv, and so on.

• The fourth component is the textual UI as such. It benefits from Prolog’s
built-in capacity of interpreting definite clause grammars (DCGs). This
way, the command line interpreter is expressed as a single, relatively com-
pact file defining the complete syntax and linking commands to calls in
the code.
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Together, these components amount to a few hundred lines of code, the
interpreter as such fitting into a single file and using less than 200 lines of
code. This is largely due to the built-in capacity of interpreting definite-clause
grammars directly as Prolog programs.

Additionally, there is the MagicDraw plug-in that allows to execute Prolog
code in a console window in MagicDraw. It is this component that allows
us to turn MACH-1 into MACH-2. This component is a by-product of the
Model Query tool (MQ, see [1]). In contrast to all other components, MQ is
implemented in Java, and enables to run any Prolog code embedded in the
MagicDraw UML modeling tool, including MACH. MQ provides functions to
run visual queries and also allows to relate model element identifiers defined in
MagicDraw to those identifiers used in MACH.

4. Usage experiences

We have field-tested MACH in an undergraduate course on model based
software development in the spring of 2013, leading to some initial insights.
The students were working in groups of 3 to 5 over a period of 13 weeks on
one case study. There were four different case studies, each of which was used
by 2-3 concurrent groups. These case studies have been used in similar courses
over the past 4 years so we can assert that the resulting models are usually
comparable in terms of size and complexity.

4.1. Usability

We found no problems whatsoever related to usability of MACH. This was
quite surprising to us since the students using MACH had a very small level
of technical prowess: many of them were completely unfamiliar with command
line tools, and some had never even used a terminal application or any of the
popular UNIX shells before. For some students, issuing a command such as cd

.. was a challenge. Interestingly, this problem arose mostly for MAC-Users,
despite the fact that MAC OS is in fact a Unix-variant with a readily available
command shell.

Once such problems were out of the way, however, using MACH was straight-
forward. Observe that MACH does not provide any built-in help system or
man-pages, and the error messages are not exactly human-readable. The only
documentation students had was a cheat-sheet like two-page summary of the
available commands. Clearly, this level of help was sufficient for most students.
So, we can safely conclude that usability is not an issue, and text-based user
interfaces can be used by non-proficient users such as undergraduate students
without great difficulty.

4.2. Stability

Another concern that we had before deploying MACH was stability. In our
experience, running a tool by a few dozens of students will expose every con-
ceivable error very quickly, and incomprehensible error messages, unexpected
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aborts, and even lost work will quickly lead to frustration. Given that many
students have a relatively low frustration threshold, this would be a potential
problem, and we were expecting this to happen. However, finding and elimi-
nating each and every problem, and providing high-quality error messages and
on-line help incurs substantial effort.

Instead, we decided to simply wrap all problems with a global exception han-
dler issuing a polite warning to the students. The real error message was hidden
and accessible only by specifically asking for it, so that the instructors could ac-
tually find out about the underlying problem, while the students would not be
confused. This approach worked surprisingly well and allowed the instructors
to effectively assist students.

4.3. Installability/Portability

Deploying the tool turned out to be a major challenge. We had originally
planned to have MACH installed on the computers available to students in the
lab rooms. However, students strongly prefer to use their own machinery in-
stead, mostly, because it allows them to work on their homework assignments
whenever and wherever they like, independent of the opening hours of the com-
puting labs. Since the students own a wide variety of machines, hardware ar-
chitectures, and operating systems, and an even wider variety of local settings,
we had to provide a universal solution.

In particular, MACH requires an executable SWI-Prolog Interpreter. When
trying to shrink wrap the application for uniform deployment, we realized that
different machines would have different file names for this executable, and people
would install it to different locations in their local directory trees. Finding and
resolving these problems was difficult, as a pre-deployment test revealed. Thus,
we chose to deploy MACH as source code and provided a build script that would
compile the code and create an executable locally. Students would then have
to install MACH in two steps. First, SWI-Prolog needed to be installed, but
students could choose just the right version and any location they preferred,
following the instructions and using the resources provided on the SWI-Prolog
web-site. In a second step, they would simply call the install script, which
creates an executable that may be started by double clicking. If this should fail,
for whatever reason, MACH can still be run from the Prolog command line by
issuing a single command.

5. Related tools

Many commercial modeling tools offer capabilities similar to those imple-
mented in MACH. For instance, MagicDraw does provide a built-in suite of
consistency checks, model differencing, and size metrics. Similar functions ex-
ist for Eclipse based tools. However, the functions actually offered by MACH
are beyond those implemented in any tool today, e.g., it generates class model
difference descriptions in English prose, it creates graphs of meta class distri-
butions, and it detects clones in UML models, for which there seems to be no
other tool at all, not even research prototypes.
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Moreover, the objective of MACH is to provide a unified tool out of ex-
isting prototypes, not as a green-field development. The goal of MACH is to
explore new algorithms and approaches in a dynamic way, with short feedback
cycles, without spending more than the bare minimum of effort on the tool’s
infrastructure.

6. Conclusions and future work

In this paper we present the MACH tool and outline the forces that in-
fluenced its design process. MACH is implemented in Prolog and provides a
command-line user interface, both of which are relatively exotic choices, to-
day. MACH can be obtained online at www2.imm.dtu.dk/~rvac/workgroup/

mach.html. However, initial usage experience suggests that our approach was
successful in satisfying the goals associated to it:

• MACH is usable by students in a classroom setting, as our experience
demonstrates. Thus, requirement R1 has been satisfied.

• MACH can be deployed to all popular platforms, but a simpler proce-
dure is desirable. So, requirement R2 has been met largely, though not
completely.

• The implementation effort was minimal, and during a period of six months,
it proved to be straightforward to gradually add features to MACH, which
is largely due to the extremely compact and readable code. We conclude
that R3 and R4 have been addressed.

We have succeeded in making advanced functionality available to students.
Thus, the experience of creating MACH has clearly shown that there are archi-
tectural alternatives to EclipseRCP and that a command-line GUI can serve its
purpose just as well as a GUI – at lower cost, since creating a light-weight tool
with only a textual interface can be achieved with very little effort.

Probably the biggest disadvantage of our approach is the difficulty to inter-
face with tools created by different research groups: given the obscure technol-
ogy we use, most other tool implementations will be difficult to connect, even
if they are created in a way facilitating reuse by others.

Our ongoing work focuses on incremental improvements of the UI, includ-
ing better documentation, on-line help, and better error messages, and adding
more and more advanced functions for UML model analysis, model transforma-
tions such as weaving, merging, refactoring; model comparison and similarity
measurements; and checking models for compliance with style-guides.

References
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[6] Harald Störrle. Towards Clone Detection in UML Domain Models. J. Soft-
ware and Systems Modeling, 12(2), 2013. (accepted in 2011).

Appendix A. Usage Scenarios for MACH

Figure A.2: Using MACH-2 to query models: Running MACH-1 in the MQ-console inside of
MagicDraw allows smooth integration. A simple click to a model element allows to navigate
to the model element’s definition in the host tool.
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Figure A.3: Opening models in MACH, assigning an alias, and determining the size of a model
as numbers of model elements and attributes.

Figure A.4: Using MACH to detect clones in a model.
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Figure A.5: Emulating the graphics capabilities missing in a textual UI to visualize meta class
frequency distribution.
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