
Enabling PHP Software Engineering Research in Rascal

Mark Hillsa, Paul Klinta,b

aCentrum Wiskunde & Informatica, Amsterdam, The Netherlands
bINRIA Lille Nord Europe, Lille, France

Abstract

Today, PHP is one of the most popular programming languages and is commonly
used in the open source community and in industry to build large application
frameworks and web applications. In this paper, we discuss our ongoing work
on PHP AiR, a framework for PHP Analysis in Rascal. PHP AiR is focused
especially on program analysis and empirical software engineering, and is being
used actively and effectively in work on evaluating PHP feature usage, program
analysis for refactoring and security validation, and source code metrics. We
describe the requirements and design decisions for PHP AiR, summarize current
research using PHP AiR, discuss lessons learned, and briefly sketch future work.

Keywords: meta-programming, program analysis, empirical software
engineering, dynamic languages, PHP

1. Introduction

PHP,1 invented by Rasmus Lerdorf in 1994, is an imperative, object-oriented
language focused on server-side application development. It is now one of the
most popular languages, as of April 2013 ranking 6th on the TIOBE program-
ming community index,2 used by 78.8 percent of all websites whose server-side
language can be determined,3 and ranking as the 6th most popular language
on GitHub.4 This popularity has led to the creation of a number of large,
widely-used open source applications and application frameworks, including
WordPress,5 Joomla,6 Drupal,7 MediaWiki,8 Symfony,9 and CodeIgniter.10

Email addresses: Mark.Hills@cwi.nl (Mark Hills), Paul.Klint@cwi.nl (Paul Klint)
1http://www.php.net
2http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
3http://w3techs.com/technologies/details/pl-php/all/all
4https://github.com/languages/PHP
5http://wordpress.org/
6http://www.joomla.org/
7http://drupal.org/
8http://www.mediawiki.org/wiki/MediaWiki
9http://symfony.com/

10http://ellislab.com/codeigniter

Preprint submitted to Elsevier June 10, 2013



The availability of such large, open-source systems provides an ideal ecosys-
tem for empirical software engineering research. PHP is also a fascinating sub-
ject for program analysis research. Most PHP applications are web-based, giving
an urgency to program analysis targeted at detecting potential security errors.
At the same time, the dynamic nature of the language (e.g., duck typing, reflec-
tion, evaluation of code built at runtime using strings), as well as its use on larger
and larger systems, increases the importance of analyses targeted at program
understanding, automated code refactoring, and programmer tool support, all
areas where PHP currently lags behind languages such as Java.

To enable research in program analysis, automated refactoring, tool support,
and empirical software engineering in PHP, we are developing PHP AiR, an envi-
ronment for PHP Analysis in Rascal. Built using the Rascal meta-programming
language [1], a successor to Asf+Sdf [2] and RScript [3], PHP AiR has been,
and is currently being, used in multiple research projects: an empirical survey
of PHP language feature usage [4], a program analysis for resolving dynamic
file includes [5], a taint analysis for detecting dangerous uses of unchecked user-
provided strings in PHP library calls, a refactoring from hand-coded HTML to
uses of template libraries, a similar refactoring from hand-coded SQL calls to
uses of database libraries, and multiple projects to extract various metrics from
PHP source code.

The rest of this paper is organized as follows. In Section 2, we provide
a brief introduction to Rascal. Section 3 constitutes the core of our paper,
discussing the requirements and design decisions for PHP AiR, giving a high-
level introduction to the tool, and presenting some of the research performed so
far, which helps to motivate these decisions and indicates how they have worked
in practice. Section 4 presents related work for Rascal and for the analysis of
PHP programs, while Section 5 concludes, discussing lessons learned and future
directions. The PHP AiR system is available online at https://github.com/

cwi-swat/php-analysis, while more information about Rascal is available at
http://www.rascal-mpl.org/.

2. Rascal

Rascal was designed to cover the entire domain of meta-programming. The
language itself is designed with unofficial “language layers.” This allows inex-
perienced Rascal programmers to start with just the core language features,
adding more advanced features as they become more comfortable with the lan-
guage. This language core contains basic data-types for booleans, integers, reals,
source locations, date-time, lists, sets, tuples, maps, and relations; structured
control flow, e.g., if, while, switch, for; and exception handling with try and
catch. The syntax of these constructs is designed to be familiar to program-
mers: for instance, if statements and try/catch blocks look like those found in
C and Java, respectively. All data in Rascal is immutable (i.e., no references
are ever created or taken), and all code is statically typed. The built-in data
type of source locations is particularly suited for creating references to source
fragments as they appear during analysis and transformation of source code.

2



Rascal’s type system is organized as a lattice, with bottom (void) and
top (value) elements. The Rascal node type is the parent of all user-defined
datatypes, including the types of concrete syntax elements (e.g., Stmt and Expr).
Numeric types also have a parent type, num, but are not themselves in a subtype
relation (e.g., real is not a parent of int).

Beyond the type system and the language core, Rascal also includes a num-
ber of more advanced features. These features can be progressively used by
the programmer to create more complex programs, and are needed in Rascal
to enable the full range of meta-programming capabilities. These more ad-
vanced features include parameterized algebraic data type definitions; a built-in
grammar formalism, which includes disambiguation facilities and annotatable
grammar rules and is used to generate scannerless generalized top-down parsers;
pattern matching over all Rascal types, including set matching, list matching,
and deep matching (i.e., matching at an arbitrary depth within a term) over
nested structures, as well as pattern-based dispatch for invoking Rascal func-
tions; comprehensions over lists, sets, and maps; visit statements for per-
forming structure-shy traversals (allowing the visit to match just those cases
of interest, with default traversal behavior for the rest) and transformation of
Rascal terms; powerful string templating capabilities; and a built-in notion of
fixpoint computation. Rascal resources [6] provide access to external sources of
data from within Rascal, leveraging the Rascal type system to ensure that uses
of external data are well-typed and to provide more convenient access (e.g., by
providing field names based on column names in a database table).

A number of Rascal features focus on the safety and modularity of Rascal
code. While local variable types can be inferred, parameter and return types
in functions must be provided. This allows better error messages to be gener-
ated, since errors detected by the inferencer can be localized within a function,
and also provides documentation (through type annotations) on function sig-
natures. Also, the only casting mechanism is pattern matching, which prevents
the problems with casts found in C (lack of safety) and Java (runtime casting
exceptions). Finally, the use of persistent data structures eliminates a number
of standard problems with using references which can leak out of the current
scope or be captured by other variables.

3. PHP AiR: PHP Analysis in Rascal

PHP AiR is being built with certain high-level requirements in mind, and
a number of design decisions have been made during development of the tool.
Below we discuss these requirements and design decisions, provide a high-level
overview of the tool, and discuss ongoing research using PHP AiR in the domains
of empirical software engineering and program analysis.

3.1. Requirements

When building PHP AiR we had several core requirements. First, and most
importantly, it should be possible to use PHP AiR to effectively and efficiently

3



PHP System

PHP System 
ASTs (Rascal)

PHP Parser 
(PHP)

PHP AiR
(Rascal)

Interactive Querying/
Empirical Analysis 

(Rascal)

Program Analysis 
(Rascal)

Result 
Reports 
(LaTeX, 
dot, etc)

Figure 1: High-Level Overview: PHP AiR.

support empirical software engineering and program analysis research on real
PHP systems, even large systems such as MediaWiki, with over 845K lines of
code as of version 1.19.1. Second, PHP AiR should be interactive to enable
what-if analyses and exploratory programming. For instance, it should be pos-
sible to write queries over PHP code to find all uses of a given language feature,
or to prototype new program analysis tools. Third, PHP AiR should support
integration with a standard PHP development environment, allowing it to be
used, in a familiar way, by the largest possible audience. Finally, given that Ras-
cal has been developed in our group for exactly these kinds of applications, we
wanted PHP AiR to profit as much as possible from Rascal’s language features
and libraries while not excluding the use of external tools (e.g., Eclipse-based
PHP tools). These external tools are made accessible by creating Rascal bind-
ings to existing Java libraries for interacting with these tools whenever that
would be advantageous. At the same time, the development of PHP AiR gives
valuable feedback to the Rascal development team and a strong incentive to
address any issues that are being raised, some of which are discussed below.

3.2. Design Decisions

PHP AiR has been developed completely in Rascal except for the parser,
which is written in PHP itself, and currently consists of almost 12, 000 lines
of Rascal code and (in the parser) 1430 lines of PHP code. Figure 1 gives a
high-level overview of PHP AiR. Individual PHP files, or whole systems (e.g.,
WordPress), are parsed and converted into Rascal terms representing ASTs.
These ASTs are then the base structure over which all other operations in PHP
AiR are built. Operations in PHP AiR are divided into two general categories
(which, in reality, can sometimes overlap): interactive querying and empirical
analysis on the one hand, program analysis on the other. In the first, the user,
using Rascal, can make a number of queries over the PHP system, supplemented
by external sources of data, and can also script these queries, aggregate results,

4



and use various standard Rascal functions for statistical analysis. Results are
computed and then written either to the console or to an external format, such
as a table or figure in a LATEX document or a .dot file representing a graph.
In the second, users can run either predefined or their own program analysis
passes. The analysis results can be used to transform existing programs in the
system, to supplement interactive queries or empirical analysis, or to display
results. We are working on extending this display capability to take advantage
of Eclipse, for instance by allowing warnings or errors computed by an analysis
to be flagged directly in the PHP source files.

The design of PHP AiR, leading to this functionality, has involved a number
of trade-offs. The first design decision related to parsing: should we use the
built-in Rascal parsing functionality, or reuse an existing parser? As mentioned
above, we decided early on to select the second option. While Rascal provides
powerful parsing capabilities, building a PHP parser from scratch would be a
significant undertaking. Instead, we parse PHP scripts using our fork11 of an
open-source PHP parser12 which generates Rascal terms representing the ASTs
of PHP programs. This provided a quicker start and makes it possible to take
advantage of new PHP language constructs as they are added to the parser.

One downside of this approach is that it does not support interacting with
PHP code in an IDE. To provide IDE support, we are building an integration
layer between PHP AiR and the Eclipse PHP Developer Tools (PDT), similar to
the integration that Rascal currently has with the Eclipse Java Developer Tools
(JDT), which we have been able to exploit in areas such as refactoring [7]. Both
approaches to parsing PHP target the same abstract syntax, allowing either to
be used by the other tools developed in PHP AiR.

A second decision, which confronted us when we started developing the initial
analysis passes, was: should we use optimized data structures written in Java,
or use the standard Rascal data types? The second provides cleaner code, while
the first could provide improved performance when analyzing large systems.
Here, we actually started with the second, moved to the first, and have now
returned to the second. Originally the built-in data types proved to use too
much memory, motivating us to switch to using optimized data types written in
Java and available through Rascal libraries. However, what we found is that the
algorithms are much more important to performance than the data structures
used to store analysis information as the computation proceeds, which has led
us to switch back to using the built-in Rascal types while also looking at faster
algorithms and improvements to the datatype implementations.

A third decision was to provide support, within Rascal, for accessing the
types of external data needed for PHP AiR. This decision led to our ongoing
research on Rascal resources [6], mentioned above in Section 2. In cases where
optimized storage is needed for extracted facts, this should allow us to store these
facts in databases while, at the same time, providing a native Rascal interface

11https://github.com/cwi-swat/PHP-Parser
12https://github.com/nikic/PHP-Parser/

5



to read and write these facts. We currently support read-only resources, but are
working on extending this work to support writing to resources as well as more
intelligent methods of reading from resources that will minimize memory use.

3.3. Empirical Software Engineering

Our current research has focused on using empirical software engineering
techniques [8] to examine feature usage in large open-source PHP systems [4].
To start, we assembled a corpus of 19 large open-source PHP systems, basing
our choice on popularity rankings provided by Ohloh,13 a site that tracks open-
source projects. In total, the corpus consists of 19, 816 PHP source files with
3, 370, 219 lines of PHP source (counted using the cloc14 tool). An extension to
this corpus, looking specifically at dynamic file includes, adds 20 additional sys-
tems selected from the GitHub PHP page,15 specifically from the most starred
and most forked repositories for the day, week, month, and overall, with the
goal of ensuring that more “regular” code (i.e., not just large, well-maintained
projects) was also covered. This added an additional 15, 492 files with 1, 805, 333
lines of PHP source.

Using this corpus, we focused on both general characteristics of PHP pro-
grams, such as the size of PHP files and the distribution of PHP language
features, as well as on the use of dynamic features in the code. For the latter,
we looked at how often these features occur in practice, how distributed these
features are in PHP programs, and also how often these dynamic features are
actually static in practice, meaning that static techniques can be used to rea-
son about these features and minimize their impact on program analysis tools.
Interesting findings include that eval is rarely used in practice (only 148 times
in total in the original corpus), that variable variables (variables that contain
the name of another variable, allowing indirect access) can, in many cases, be
resolved statically to a specific set of referenced variables, and that many new
features such as goto and traits are not yet used in popular systems (no uses at
all were found in the corpus for either feature). At the same time, ongoing stu-
dent projects and industry collaborations are using similar techniques to derive
metrics from PHP code.

This work has led to performance improvements in Rascal to better handle
large quantities of PHP system data, and has helped us improve the built-in
statistics libraries. It has also helped us improve PHP AiR to support easier
querying over language constructs as well as simpler ways of aggregating results
to present online summaries and generate LATEX tables and figures.

3.4. Program Analysis

Our ongoing work on program analysis using PHP AiR is focused on a
number of analysis tasks common to other programming languages as well as

13http://www.ohloh.net/tags/php
14http://cloc.sourceforge.net
15https://github.com/languages/PHP

6



several that are more specific to PHP. For the first, we are building type inference
and alias analysis passes that will provide information useful for programmer
tools and other analysis passes. For the second, we are working on a taint
analysis to detect possible security violations in calls to system functions (e.g.,
uses of unchecked user input to construct database queries), and have already
implemented an analysis to determine, in many cases, which files are actually
included by dynamic file inclusion expressions [5]. We are also working on
the analyses needed to handle various refactoring operations, including a string
analysis that will be needed to convert uses of HTML and SQL strings, built
using string-building operations, into safer uses of HTML and SQL libraries.

Although some of the challenges we faced are based on the dynamic nature
of PHP, other challenges are caused by the size of the systems we are analyzing,
along with the fact that Rascal is not yet optimized for memory consumption.
Practically, this means that we need to focus quite heavily on efficient, modular
algorithms, and are also continuing to improve the memory footprint and overall
performance of Rascal. On the other hand, features of Rascal such as source
locations have proven to be quite valuable, providing a way to easily tie back
error information derived from ASTs to specific points in the source code. The
availability of data types for maps and relations has also provided natural ways
to represent many of the facts needed during program analysis.

4. Related Work

The design of Rascal is based on inspiration from many earlier languages
and systems. The syntax features (grammar definition and parsing) are directly
based on SDF [2], but the notation has changed and the expressivity has in-
creased (c.f., earlier work discusses this evolution [9]). The features related to
analysis are mostly based on relational calculus, relational algebra and logic pro-
gramming systems such as Crocopat [10], Grok [11] and RScript [3], with some
influence from CodeSurfer [12]. Rascal has strongly simplified backtracking and
fixed point computation features reminiscent of constraint programming and
logic programming systems like Moreau’s Choice Point Library[13], Prolog and
Datalog [14]. Rascal’s program transformation and manipulation features are
directly inspired by term rewriting/functional languages such as ASF+SDF [15],
Stratego [16], TOM [17], and TXL [18]. The ATerm library [19] inspired Ras-
cal’s immutable values, while the ANTLR tool-set [20], Eclipse IMP [21] and
TOM [17] have been an inspiration because of their integration with mainstream
programming environments.

A number of tools have been developed for the analysis of PHP programs.
The PHP-sat16 and PHP-tools17 projects include limited support (mainly in-
traprocedural) for security analysis as well as analyses to detect a variety of

16http://www.program-transformation.org/PHP/PhpSat
17http://www.program-transformation.org/PHP/PhpTools

7



common bug patterns (e.g., assigning the result of a function that does not con-
tain a return statement). PHP AiR is targeting more complex PHP programs
and a wider variety of analyses. More focused tools include PHP CodeSniffer,18

which checks PHP code for violations of defined coding standard, and the PHP
Copy/Paste Detector,19 which provides a very limited form of clone detection
(i.e., exact textual copies only). There are also several tools for calculating met-
rics for PHP code, including PHPDepend20 and PHPLoc.21 We are integrating
in similar functionality, with hopefully better performance—PHPLoc is fast,
but gives limited information, while PHPDepend is more complete but is quite
slow when run on larger codebases. PHPMD22 both computes metrics and tries
to find a number of programming flaws and potential bugs, but focuses mainly
on areas that do not require sophisticated analysis. Biggar [22] with phc and
Zhao et al. [23] with HipHop both perform analysis (under various assumptions
about the code) as part of the task of compiling PHP code, while Huang et al’s
WebSSARI [24] and Jovanovic et al.’s Pixy system [25, 26] use a combination
of static analysis and (in the case of WebSSARI) program instrumentation to
protect against security vulnerabilities. While we are providing an environment
with PHP AiR where similar analyses can be created, we are also looking at a
number of novel analyses, including one to detect bugs introduced by changes
to the semantics of PHP which occur as the language continues to evolve.

5. Lessons Learned and Future Directions

From our experience building PHP AiR we have been able to extract a
number of important lessons:

• Rascal’s high-level data types (e.g., sets, maps, relations, and ADTs) and
language features (pattern matching, traversal, local backtracking, com-
prehensions) all favor a declarative programming style where the distance
between a published algorithm and its Rascal implementation is often
surprisingly small. This enables easy experimentation at the algorithmic
level. It also leads to a significantly smaller code size for the resulting tools
compared to similar tools implemented in more traditional programming
languages.

• Location information is important for research looking at language fea-
tures and critical for program analysis, where it can be used to provide
accurate messages. As already mentioned earlier, Rascal includes a source
location data type as a language feature, with locations being used ex-
tensively in the libraries for IDE integration (e.g., for error reporting and

18http://pear.php.net/package/PHP_CodeSniffer
19https://github.com/sebastianbergmann/phpcpd
20http://pdepend.org/
21https://github.com/sebastianbergmann/phploc
22http://phpmd.org/

8



source code annotation). This simplifies the processing of references to
source code fragments.

• Flexibility in secondary tool choices, such as parsing, has been key to
quickly getting PHP AiR off the ground. Since all code in PHP AiR
works over AST nodes supplemented with location information, different
parsers can be used as front-ends without needing broader changes to the
source code of PHP AiR itself.

• The ability to script empirical analyses, and even to script the generation
of artifacts for research papers such as tables and figures, has been an
important feature, allowing us to make the results of our research repro-
ducible in a form that can be more easily checked.

• The availability of Rascal resources has provided a clean way to reuse data
created by external tools, and should be extended to encompass additional
data sources.

• Performance is a persistent issue, especially when analyzing large systems,
and needs to be addressed in PHP AiR and directly within Rascal. There
are still a number of cases where memory use or execution performance are
unsatisfactory, but, more positively, these cases are driving improvements
in the algorithms used in PHP AiR and in the implementation of Rascal.

We have a number of future plans for further developing and utilizing PHP
AiR. First, we plan to complete integration with the Eclipse PHP Development
Tools, allowing analysis and transformation of the code to be directed from
within Eclipse. Second, we plan to continue making improvements to the per-
formance of Rascal to allow us to handle larger codebases. Third, we also plan
to continue work on program analysis and empirical software engineering using
PHP AiR, which is proving to also be a good environment for student projects.

In the longer term, we plan to utilize persistent storage to more easily store
and process the intermediate results of our analyses. Also, to raise the level of
abstraction in creating the various components of PHP AiR, we are working on
domain-specific languages for tasks such as intermediate language generation
and control flow graph construction. These DSLs should be usable for creating
tools for languages beyond PHP.

References

[1] P. Klint, T. van der Storm, J. J. Vinju, RASCAL: A Domain Specific Language for Source
Code Analysis and Manipulation, in: Proceedings of SCAM’09, IEEE, 2009, pp. 168–177.

[2] J. Heering, P. Hendriks, P. Klint, J. Rekers, The syntax definition formalism SDF - reference
manual, SIGPLAN Notices 24 (11) (1989) 43–75.

[3] P. Klint, Using Rscript for Software Analysis, in: Working Session on Query Technologies and
Applications for Program Comprehension (QTAPC 2008), 2008.

[4] M. Hills, P. Klint, J. J. Vinju, An Empirical Study of PHP Feature Usage: A Static Analysis
Perspective, in: Proceedings of ISSTA’13, ACM Press, 2013, to appear, available at http:
//homepages.cwi.nl/~hills/publications/php-feature-usage.pdf.

9



[5] M. Hills, P. Klint, J. J. Vinju, Statically Resolving Dynamic Includes in PHP, preprint available
at http://homepages.cwi.nl/~hills/publications/resolving-php-includes.pdf.

[6] M. Hills, P. Klint, J. J. Vinju, Meta-language Support for Type-Safe Access to External Re-
sources, in: Proceedings of SLE’12, Vol. 7745 of LNCS, Springer, 2012, pp. 372–391.

[7] M. Hills, P. Klint, J. J. Vinju, Scripting a Refactoring with Rascal and Eclipse, in: Proceedings
of WRT’12, ACM, 2012, pp. 40–49.

[8] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, Experimentation in Software
Engineering, Springer, 2012.

[9] J. van den Bos, M. Hills, P. Klint, T. van der Storm, J. J. Vinju, Rascal: From Algebraic
Specification to Meta-Programming, in: Proceedings of AMMSE’11, Vol. 56 of EPTCS, 2011,
pp. 15–32.

[10] D. Beyer, Relational programming with CrocoPat, in: Proceedings of ICSE’06, ACM Press,
2006, pp. 807–810.

[11] R. C. Holt, Grokking Software Architecture, in: Proceedings of WCRE’08, IEEE, 2008, pp.
5–14.

[12] P. Anderson, M. Zarins, The CodeSurfer Software Understanding Platform, in: Proceedings of
IWPC’05, IEEE, 2005, pp. 147–148.

[13] P.-E. Moreau, A choice-point library for backtrack programming, JICSLP’98 Post-Conference
Workshop on Implementation Technologies for Programming Languages based on Logic (1998).

[14] S. Ceri, G. Gottlob, L. Tanca, Logic programming and databases, Springer-Verlag New York,
Inc., New York, NY, USA, 1990.

[15] M. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, J. Visser, The ASF+SDF Meta-
environment: A Component-Based Language Development Environment, in: Proceedings of
CC’01, Vol. 2027 of LNCS, Springer, 2001, pp. 365–370.

[16] M. Bravenboer, K. T. Kalleberg, R. Vermaas, E. Visser, Stratego/XT 0.17. A Language and
Toolset for Program Transformation, Science of Computer Programming 72 (1-2) (2008) 52–70.

[17] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, A. Reilles, Tom: Piggybacking Rewriting
on Java, in: Proceedings of RTA’07, Vol. 4533 of LNCS, Springer, 2007, pp. 36–47.

[18] J. R. Cordy, The TXL source transformation language, Science of Computer Programming
61 (3) (2006) 190–210.

[19] M. van den Brand, H. de Jong, P. Klint, P. Olivier, Efficient Annotated Terms, Software,
Practice & Experience 30 (2000) 259–291.

[20] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages, Pragmatic
Bookshelf, 2007.

[21] P. Charles, R. M. Fuhrer, S. M. Sutton Jr., E. Duesterwald, J. J. Vinju, Accelerating the
Creation of Customized, Language-Specific IDEs in Eclipse, in: Proceedings of OOPSLA’09,
ACM Press, 2009, pp. 191–206.

[22] P. Biggar, Design and Implementation of an Ahead-of-Time Compiler for PHP, Ph.D. thesis,
Trinity College Dublin (April 2010).

[23] H. Zhao, I. Proctor, M. Yang, X. Qi, M. Williams, Q. Gao, G. Ottoni, A. Paroski, S. MacVicar,
J. Evans, S. Tu, The HipHop Compiler for PHP, in: Proceedings of OOPSLA’12, ACM, 2012,
pp. 575–586.

[24] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, S.-Y. Kuo, Securing Web Application
Code by Static Analysis and Runtime Protection, in: Proceedings of WWW’04, ACM, 2004,
pp. 40–52.

[25] N. Jovanovic, C. Krügel, E. Kirda, Pixy: A Static Analysis Tool for Detecting Web Application
Vulnerabilities (Short Paper), in: IEEE Symposium on Security and Privacy, 2006, pp. 258–
263.

[26] N. Jovanovic, C. Kruegel, E. Kirda, Precise Alias Analysis for Static Detection of Web Appli-
cation Vulnerabilities, in: Proceedings of PLAS’06, ACM, 2006, pp. 27–36.

10


