
Verifying Predictive Services’ Quality with Mercury

S. Martı́nez-Fernándeza,∗, X. Francha, J. Bisbalb

aGESSI Research Group, Universitat Politècnica de Catalunya - Barcelona Tech (UPC), C/Jordi Girona 1-3, 08034,
Barcelona, Spain

bDept. ICT, Universitat Pompeu Fabra (UPF), C/Tánger 122-140, 08018, Barcelona, Spain

Abstract

Due to the success of service technology, there are lots of services nowadays that make predic-
tions about the future in domains such as weather forecast, stock market and bookmakers. The
value delivered by these predictive services relies on the quality of their predictions. This paper
presents Mercury, a tool that measures predictive service quality in the domain of weather fore-
cast, and automates the context-dependent selection of the most accurate predictive service to
satisfy a customer query. To do so, candidate predictive services are monitored so that their pre-
dictions can be eventually compared with real observations obtained from some trusted source.
Mercury is a proof-of-concept to show that the selection of predictive services can be driven by
the quality of their predictions. Its service-oriented architecture (SOA) aims to support the easy
adaptation to other prediction domains and makes feasible its integration in self-adaptive SOA
systems, as well as its direct use by end-users as a classical web application. Thoughout the
paper, we show how Mercury was built.

Keywords: tool development, predictive services, service-oriented architecture, service
selection, service monitoring, forecast verification

1. Introduction

The success of service technologies has boosted a big offer of services covering many do-
mains. Service customers do not need to worry about the development, maintenance, infrastruc-
ture, or any other issue related to the service operation. Instead, they just have to find and choose
the most appropriate service offered by some service provider [1].

Therefore, it becomes necessary to assess which service is the most appropriate for fulfill-
ing the customer’s needs. These needs may refer to quality of service (QoS), reputation, cost,
security, personalisation, locality and so on.

Among all kinds of services, we concentrate on predictive (or forecasting) services. We
define predictive services as those services whose main functionality is to show in advance a
condition or occurrence about the future. Predictive services emerge in many domains: stock

∗Corresponding author
Email addresses: smartinez@essi.upc.edu (S. Martı́nez-Fernández), franch@essi.upc.edu (X. Franch),

jesus.bisbal@upf.edu (J. Bisbal)
URL: http://www.essi.upc.edu/~smartinez/ (S. Martı́nez-Fernández)

Preprint submitted to 4th WASDeTT June 10, 2013

market prices, bookmaker results, election polls, sales forecasting and so on. We are quite used
to see this functionality offered by websites that provide predictions over specific data [2]. The
quality of their predictions is of obvious importance to: citizens because trustable predictions
may significantly improve their decision-making; providers because it affects their reputation,
and potentially their revenues; and developers, if the prediction algorithm is embodied as a soft-
ware component ready to be integrated into other systems (e.g., offered as a Web Service (WS)).

An example that is really familiar to all of us is weather forecast. Weather conditions affect
our decisions in daily routines such as deciding what to wear first thing in the morning or when
planning a trip. To make these decisions, different services like the weather forecast section on
TV news or specialized web sites (such as forecastadvisor.com) are consulted. However, some-
times their predictions do not match or they change over time as the date of interest approaches
and therefore a software engineering challenge arises: given a portfolio of candidate predictive
services, which one is expected to be the most accurate to satisfy the customer needs?

This paper presents Mercury, a tool that assesses weather predictive services based on the
quality of their predictions. Mercury is a particular instance of QuPreSS, a service-oriented
reference model for predictive service quality assessment [3]. Mercury is a tangible result from
QuPreSS and was built as a proof-of-concept for the challenge of assessing weather predictive
services. Thoughout the paper, we show how Mercury was built, focusing on its requirements
and the main design decisions.

The preliminary validation that we offer in the paper is a first prototype that is focused on the
weather forecast domain. It is the first step of the creation of a general validation framework for
the problem of prediction quality in many domains.

The paper is structured as follows. In Section 2, we motivate the problem we want to solve.
Section 3 describes the requirements as well as the main design and implementation decisions
made on Mercury. The demonstration scenarios are illustrated in Section 4. Section 5 shows
lessons learned from the experience of Mercury building. The final section summarizes the
paper and identifies a number of future directions.

2. The Prediction Problem

Forecast verification is the process of assessing the quality of a prediction by comparing it
with its corresponding observation [4]. Forecast verification for predictive services has not re-
ceived sufficient attention; just few previous works have used prediction quality to guide the
selection of services for the weather forecast domain. For instance, Domenico [5] propose geo-
sciences WS to integrate sources of data in order to perform later forecast verification with ob-
servations. Therefore, more effort is necessary to integrate methods for forecast verification in
SOA monitoring frameworks [3].

In response to this scenario, we have presented elsewhere the QuPreSS reference model [3].
QuPreSS addresses the selection of the predictive service that is expected to be the most accurate
to satisfy some given customer needs. To this end, QuPreSS requires the following four inputs
(see Fig. 1):

• Predictive services. The portfolio of services that offer predictions to the customer. These
services need to be localized in a service directory.

• Ground truth. Trusted information that is the object of prediction. It is collected from one
single source (e.g., service providing real observations once they happen), which is trusted
and reliable, hence only one is needed.

2

Figure 1: The QuPreSS reference model.

• Predictive context. Context conditions that may influence the predictions (e.g., date and
location).

• Customer query. The concrete customer’s need that is required to be satisfied by a predic-
tion given for some predictive service.

To get the two former inputs, it is necessary to use a monitoring infrastructure able to capture
data from services. The two latter ones come from the customer, indirectly (information about
the context gathered, e.g., from her GPS location) or directly (text of the query).

This comprehensive reference model may be implemented in all the prediction domains that
we have found.

3. Mercury: A Proof-of-Concept for the Prediction Problem solved by QuPreSS

Mercury is an implementation of the QuPreSS reference model for the weather forecast do-
main. Therefore, its main functional requirement is to satisfy a customer’s weather forecast query
by selecting the most appropriate service given the context of the customer and the text of the
query. Extensively, Table 1 shows Mercury requirements. Non functional requirements of Table
1 are already addressed by the QuPreSS reference model, which is depicted in Fig. 2. In this
section, we present how the tool was built to accomplish the functional requirements of Table 1.

3.1. External sources (functional requirements (FR) 2, 2.1, 3, 3.1 of Table 1)

Mercury needs to have access to a ground truth service and a portfolio of predictive services.
They are external and potentially heterogeneous. They can be implemented by WS or other
technologies. If an external source is not exposed as a WS, it can be wrapped into a WS proxy.
These proxies also take care of parsing the different formats into a unified form. To integrate all
these different technological styles, Mercury is organized around an SOA.

Mercury deals with a simplified scenario in terms of service portfolio and context vari-
ables. On the one hand, the ground truth is obtained from the Spanish Meteorological Agency
(AEMET1) . The agency provides timely observations with the help of more than 700 stations
with sensors measuring weather conditions. On the other hand, for demonstration purposes,

1ftp://ftpdatos.aemet.es/datos observacion/resumenes diarios/

3

Table 1: Summary of Mercury requirements. Detailed requirements and fit criteria can be found in [6].
Number Requirement
FR 1 The tool shall compare the predictions from predictive services with real obser-

vations.
FR 1.1 The tool shall make a ranking of a set of weather predictive services based on

the accuracy of their predictions.
FR 2 The tool shall read prediction data from several weather predictive services.
FR 2.1 The weather predictive services currently considered are: RSS Yahoo! Weather,

Meteocat, and AEMET.
FR 3 The tool shall read real observations coming from a trusted source.
FR 3.1 The trusted source (i.e., ground truth) currently considered is: AEMET.
FR 4 The tool shall monitor and parser data from both types of external sources:

predictive services and ground truth service.
FR 5 The tool shall save data from both types of external sources: predictive services

and ground truth service.
FR 6 The tool shall be able to offer data to external systems.
FR 7 The tool shall give current weather forecast from the most accurate predictive

service for a specified city.
NFR 1 The tool shall be extensible.
NFR 2 The tool shall be developed as a service.
NFR 3 The tool should be adhered to standards.
NFR 4 The tool shall be able to work with continuous data flows.
NFR 5 The tool shall use existing components when possible.
NFR 5.1 The tool shall be able to connect to SALMon to monitor web services.
NFR 6 The tool shall obey legal statements from external web services.
NFR 7 The tool shall work when external sources are unavailable.

Figure 2: Components of the QuPreSS reference model.

4

the portfolio of predictive services is composed of: AEMET itself2, Meteocat3, and Yahoo!
Weather4. These services are continuously monitored by Mercury in order to be able to infer in
which contexts they are more adequate by comparing their predictions with the ground truth over
time (see Section 3.2).

The three predictive services are wrapped into a WS with a pre-defined format that consists of
an array of elements of type ApiForecastData. This type includes a superset of elements (which
can be null) with information about a weather forecast for a date: ConditionID, Description,
Icon, Image, IsNight, Prediction, ShortPrediction, ShortTitle, TempHigh, TempLow, TempUnit,
Title and WebUrl. For more information about these elements, the reader is referred to [6].

3.2. The Monitor and the Forecasting Data Collector services (FR 4)

In the heart of the architecture lies a monitor. It saves in a systematic manner the QoS of each
predictive service and the response given to every periodical request launched to these services.
We use the SALMon monitor infrastructure to implement this service [7]. This infrastructure
was chosen given its adaptability and performance exhibited in previous uses [8][9][10]. The
data collection process works as follows.

1. Setup: the parameters of the system are initialized. For instance, which are the cities put
under the control of the monitor and which is the portfolio of predictive services consid-
ered. Also, the data collection process is initiated.

2. Ground truth collection: the Forecasting Data Collector service daily saves a summary of
the real observations (e.g., high and low temperatures of the day) once they happen for
each city. Observations are provided by AEMET.

3. Prediction collection: First, SALMon gets the response (with predictions) that every pre-
dictive service gives for each city. This operation is repeated several times per day to cope
with temporal unavailability (every 6 hours by default). At the end of the day, the Forecast-
ing Data Collector service gets the last response that SALMon obtained for each predictive
service. The data provided by the monitor is treated for several reasons, e.g., predictive
services may differ in the number of days in advance that the provide forecasts. Once this
treatment finishes, the prediction of the day is stored in the databases.

3.3. Databases (FR 5)

Mercury includes two database management systems (DBMS): one in charge of saving obser-
vations (Ground Truth Database) and another one to save predictions (Forecast Data Database).
In those prediction domains in which predictions change very frequently, it would be better to
use data stream management systems instead of DBMS to process continuous data flows. Nev-
ertheless, this is not the case for weather forecasting, where oscillations are seldom dramatic.

To determine the data model of our tool, we consolidated the information given by the con-
sidered sources (i.e., all three predictive services and the ground truth service). These sources
give different information about weather conditions (e.g., wind speed, humidity...). Still, a subset
of information is common to all of them: maximum temperature, minimum temperature, unit of
temperature, date of forecast/observation and location of forecast/observation.

2http://www.aemet.es/es/eltiempo/prediccion/municipios
3http://dadesobertes.gencat.cat/ca/dades-obertes/prediccions.html
4http://developer.yahoo.com/weather

5

Figure 3: Data conceptual model for weather forecast.

Fig. 3 shows the conceptual model describing the data collected. The two main entities
are Forecast and Observation. Since both of them share most of the attributes, we define these
common attributes in an abstract entity WeatherData.

Observations are data points given by the GroundTruthService, whilst Forecasts are data
points that a WeatherForecastService makes in advance. In both cases, they refer to a particular
location (City).

The temporal dimension plays a fundamental role in the model. We have three temporal
variables to reconcile: 1) the number of days predicted by a predictive service (attribute daysI-
nAdvance in WeatherForecastService), 2) the date in which a prediction was made (timeStam-
pOfForecast in Forecast), and 3) the date of the prediction (monitoringDate in WeatherData).

3.4. Forecast Verifier (FR 1, 1.1, 7)

The Forecast Verifier component handles customer queries. It has two functionalities. First,
it supports the decision-making process of choosing the most accurate predictive service from
the available portfolio. Second, it handles the query over this chosen service. For this second
functionality, it relies on the Invocator component, which invokes the chosen service to return its
predictions to the customer (see Fig. 2).

The quality parameter defined in this proof-of-concept was the accuracy of high and low
temperature forecasts. More precisely, we have implemented two measures, the mean-squared
error and the approximation error. Both of them quantify the difference between values implied
by an estimator (i.e., predictive services) and the truth values.

The mean-squared error (MSE) of a predictive service PS is defined as:

MS EPS =

√
m∑

i=1

(µTgt − TPS i)2

n
(1)

where µTgt is the average of temperatures (high or low) of the corresponding ground truth
observations (”corresponding” means the observations that have the same value for the monitor-
ingDate attribute as the monitoringDate attribute of the predictions of TPS i); TPS i is a temperature
(high or low) as predicted by the PS ; i is an index (which refers to a prediction made for a date
interval); n is the total amount of observations from the gt (ground truth) and m the total amount

6

of predictions made by the PS for a date interval. When the PS gives predictions more than one
day in advance, m is greater than n because there are several predictions for the same date.

The approximation error (AE) is calculated as follows:

AEPS =

n∑
i=1

|TGTi − TPS i|

n∑
i=1

|TGTi|

(2)

where T indicates a high or low temperature that is either a prediction from the PS or its
corresponding observation from the ground truth (GT); i is an index (which refers to a date); and
n is the total amount of observations/predictions compared.

A quality-based ranking of predictive services can be done by using any of these two mea-
sures. The default ranking is made with the mean-squared error of predictions for the last fifteen
days, in which predictive services with lower mean-squared error are more accurate. This allows
to select the predictive service with the highest likelihood to be right. This ”best” service is the
one with the highest quality in the past under the variables (e.g., a city) of a customer query.

3.5. Front-ends (FR 6)
Mercury provides two different front-ends. First, a web client application that can be used

by customers to directly enter their queries. The parameters of the query are the date and the
location in which the customer is interested, and the kind of response (report or redirection).
Second, a WS that allows external services interoperating with Mercury via a WSDL definition.
Section 4 provides more details on this part.

3.6. Technologies
Mercury has been implemented in Java. Mercury services run under the WS engine Axis2

and the Tomcat application server. MySQL has been chosen as DBMS. The web client uses
jQuery and Highcharts javascript libraries for graphics.

4. Demonstration Scenarios

We have designed two demonstration scenarios to show the functionalities and usage of the
web client interface and WS. They are explained below and in the demonstration video accesible
at the following URL: http://youtu.be/XE58jSwcIic .

4.1. Analysis Scenario
To analyze under which circumstances prediction models perform better or worse, Mercury

can be requested to generate a report with the ranking of predictive services ordered by their
mean-squared error or approximation error. This ranking is generated given a specified city and
a period of time. There are two kinds of reports:

1. Report with predictions made in a specific date: It analyses all weather forecasts made
in the chosen date for a specific city. For instance, if the customer asks which service
made better forecasts on August 4th 2011 in Tarragona, she gets the mean-squared errors
of predictions made by all predictive services when forecasting next days’ weather (5th,
6th...). As we can see in Fig. A.13 (see Appendix A), the service that made better forecasts
was Yahoo.

7

2. Report with predictions made for a specific date: It analyzes all weather forecasts made
for the given date and a specific city. For example, if the customer asks which service gave
better forecasts for July 31st 2011 in Lleida, she gets mean-squared errors of predictions
previously made (on 30th, 29th...) by all services for July 31st. The best service was
AEMET (Fig. A.20, see Appendix A).

The demonstration video shows the graphical representation of the results as displayed by
Mercury.

4.2. Prediction Scenario
In this scenario, the customer specifies a city and she gets the forecasts (with the highest

likelihood to be right) for the next days. To do so, Mercury compares the errors that predictive
services made in the predictions for that city in the last fifteen days, and returns the current
forecasts from the predictive service that has been more accurate for that city in the past.

This functionality is not only available in the web client interface, but also as a WS. Fig. 4
shows an excerpt of the response given by the WS when asking for forecasts in Barcelona at
November 2nd in 2012.

5. Discussion and Lessons Learned

Next, we show the difficulties or problems that we had to overcome, and then the strengths
and weaknesses of the project.

The requirements basically required to integrate and monitor various web services, and to
progressively add new predictive services and other ways to measure their quality. As a result, we
focused on developing a tool with a scalable architecture based on SOA whereas we simplified
the predictive service portfolio and context variables. We found two mayor problems during
the development of the tool. First, we needed to perform adaptations to the current version of

Figure 4: Request (above) and response (below) of the ForecastVerifierWS.

8

SALMon, namely: adding the functionality of saving the whole response of the service which is
monitored; and increasing the longitude of a varchar field to support longer soap actions. Second,
in the beginning of the project a fourth weather predictive service had been monitored, but after
two months it became a pay-per-use service, so we had to stop to monitor it. Also, the ground
truth service has been evolved by the provider, what has implied new changes. We could have
avoided this by only using web services with long term support.

Regarding testing, we started the process at the lowest level: unit testing of predictive ser-
vices that we developed and our web application. Later, we continued the testing process at the
integration level. With the integration level we tested the working of the predictive data collector
service. Finally, non-functional properties were tested. The most crucial non-functional require-
ment was reliability. External sources were distributed over the network and even developed and
hosted by different organizations. Thus, we needed to test what happen when an external source
is unavailable (for reasons out of our control). For details about how testing was performed, the
reader is referred to [6].

By far, we had the biggest problem while uploading the services to the production environ-
ment. First, the network of the university had the port 500 closed, which we were using to read
observations from AEMET ftp server. To solve this problem, we opened this port and made a
cron job to download the observations. Second, in the development environment, we were work-
ing with the latest version of Axis2 (1.5.4, released on December 2010) and in the server the
version of Axis2 was 1.3. The web service clients generated by version 1.5.4 were not compati-
ble with version 1.3. Therefore, we needed to generate them again with the version 1.3 to solve
this problem. Third, in order to make debug and testing easier, we asked for permission to access
the log of Tomcat server.

The rest of the problems were related to the need of having an expert in the predictive domain
for the development of these tools, since it is needed to perfectly know the complex predictive
context to assess the quality of predictions. For instance, non-expert stakeholders may have
difficulties to properly cope with trivial problems (e.g., if an observation says that it rained just
a few drops, can we consider as correct a forecast that predicted the rain?) or to design more
complete validation plans.

5.1. Strengths and weaknesses

Mercury has allowed to assess the feasibility of the QuPreSS reference model and to un-
derstand the complexity of the prediction problem. We experienced the successful selection of
predictive services by instantiating QuPreSS for the weather forecast domain. Moreover, Qu-
PreSS may be applied for all the prediction domains that we have found.

Another strength of this project is that in our research group there were already people with
experience in SOA. As a result, Mercury development has benefited from the already defined
SOA infrastructure implanted for SALMon, and knowledge about standards and de-facto tech-
nologies that had been gathered in previous experiences. It contributed to efficiently build Mer-
cury and reduce the learning curve in the beginning.

On the other hand, among the weaknesses we should remark the following ones: the tool was
developed as a part of a master thesis with a limited duration; we are experiencing difficulties
to find more students to follow-up this work; and finally, as an academic tool, there are lim-
ited resources (e.g., we implemented this first proof-of-concept for the weather forecast domain
because it was the predictive domain for which more free services were available).

9

6. Conclusions

We have presented Mercury, an implementation for the weather forecast domain of the Qu-
PreSS reference model. QuPreSS addresses the challenge of selecting the most accurate predic-
tive service from a given portfolio to satisfy the customer’s needs in a certain domain. The idea
is that there are predictive services all across the web and tools become neccesary to wire them
up. Mercury enables to spawn a set of predictive services. Its main contribution is to make the
interconnection of such predictive services possible in order to assess their predictions.

There are three kinds of envisioned users for any instantiation of QuPreSS such as Mercury:
individual citizens who want to obtain the best possible prediction for a particular query given
their current context; service designers who can integrate the tool in the core of self-adaptive SOA
systems to guide its evolution; domain specialists (e.g., meteorologists, brokers, etc.) who want
to understand when their prediction models behave better or worse. The current implementation
of Mercury has been validated with three real weather predictive services. The main goal of the
validation has been to assess the feasibility of the approach and to understand its complexity for
designing more complete validation plans.

As future work, a larger-scale validation over this proof-of-concept would require an on-
tological analysis of the domain of interest to identify the relevant domain concepts and their
relationships. Also, we plan to use data-mining to identify the current knowledge about key
parameters that determine predictive service quality, and to construct new Mercury-like instanti-
ations of QuPreSS for other domains.

Acknowledgments

This work has been supported by the Spanish project TIN2010-19130-C02-00.

References

[1] M. Papazoglou, Web services: principles and technology, Addison-Wesley, 2008.
[2] K. Nikolopoulos, K. Metaxiotis, V. Assimakopoulos, E. Tavanidou, A first approach to e-forecasting: a survey of

forecasting web services, Information management & computer security 11 (2003) 146–152.
[3] S. Martı́nez-Fernández, J. Bisbal, X. Franch, Qupress: A service-oriented framework for predictive services quality

assessment, in: 7th International Conference on Knowledge Management in Organizations: Service and Cloud
Computing, Springer, pp. 525–536.

[4] A. H. Murphy, What is a good forecast? an essay on the nature of goodness in weather forecasting, Weather and
Forecasting 8 (1993) 281–293.

[5] B. Domenico, Forecast Verification with Observations: Use Case for Geosciences Web Services, 2007.
http://www.unidata.ucar.edu/projects/THREDDS/GALEON/Phase2Connections/VerificationUseCase.html.

[6] S. Martı́nez-Fernández, Accuracy assessment of forecasting services (2011).
[7] M. Oriol Hilari, J. Marco Gómez, J. Franch Gutiérrez, D. Ameller, et al., Monitoring adaptable soa systems using

salmon (2010).
[8] C. Muller, M. Oriol, M. Rodrı́guez, X. Franch, J. Marco, M. Resinas, A. Ruiz-Cortes, Salmonada: A platform for

monitoring and explaining violations of ws-agreement-compliant documents, in: Principles of Engineering Service
Oriented Systems (PESOS), 2012 ICSE Workshop on, IEEE, pp. 43–49.

[9] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, K. Pohl, Usage-based online testing for proactive
adaptation of service-based applications, in: Computer Software and Applications Conference (COMPSAC), 2011
IEEE 35th Annual, IEEE, pp. 582–587.

[10] A. Kertész, G. Kecskeméti, A. Marosi, M. Oriol, X. Franch, J. Marco, Integrated monitoring approach for seamless
service provisioning in federated clouds, in: Parallel, Distributed and Network-Based Processing (PDP), 2012 20th
Euromicro International Conference on, IEEE, pp. 567–574.

10

Appendix A. User Manual and Demo

The web client of the tool, Mercury, is a web application that enables users to analyse the
best service for their needs. The user can consult: observations, predictions and its errors. It
is available on http://gessi.lsi.upc.edu/accuracyassessment/ . Below, we show the
features of the analysis scenario (see Section 4.1). The demonstration video, available at http:
//youtu.be/XE58jSwcIic, includes a summary of both scenarios (analysis and prediction).

The index page is shown in Figure A.5. Under the title of the page, there is a menu with four
options:

• Home, which is the start page.

• Observations, to see last x observations of a city.

• Predictions made in a specified day, to get all weather forecasts made in the chosen date
of invocation (the day that forecasts were taken by the web services) for a specific city.

• Predictions made for a specified day, which serves to get all weather forecasts made for a
specific day (the predictions for this day) and for a specific city.

The following subsections illustrate how the different pages work.

Appendix A.1. Page of observations

In the observations page, real observations taken by AEMET’s sensors in one particular city
can be requested. The form that is shown in Figure A.6 has as input parameters the number of
days and the city to be consulted.

After clicking the button ”see observations”, maximum and minimum temperatures of the
city are shown. They are shown in two ways: with a table (Figure A.7) and with a graph (Figure
A.8). The table has three columns: date, which refers to the date of the observation; max, which
is the maximum temperature of the day in Celsius; and min, which is the minimum temperature
of the day in Celsius. The graph is a line chart which contains two lines with the maximum and
minimum temperatures of last days. The X-axis contains the date of the observations and the Y-
axis the temperature in Celsius. If we put the mouse over the observation of one day, numerical
values are shown.

Figure A.5: Main screen of the forecast verifier application.

11

Figure A.6: Form of observations menu.

Figure A.7: Example of a table with observations.

Figure A.8: Example of a graph with observations.

12

Figure A.9: Form of the predictions made in a specified day page.

Figure A.10: Example of a table with predictions made a specified day.

Appendix A.2. Page of predictions made in a specified day
The ”predictions made in a specified day” page includes a form to get all weather forecasts

made in the chosen date of invocation (the day that forecasts were taken by the web services) for
a specific city. The input parameters are the date of invocation and the city.

This query returns all weather forecasts made in a specified day. Furthermore, forecast verifi-
cation with observations is performed by means of mean squared error and approximation error.

First of all, a table with all weather forecasts made by all web services is shown (see Fig-
ure A.10). This table contains 6 columns. The first one indicates the day of the forecast. In
other words, all information displayed in a row refers to the same day. The second and third
columns represent real maximum and minimum temperature respectively. The fourth and fifth
columns contain the predicted maximum and minimum temperatures respectively. For instance,
the highlighted row of Figure A.10 contains predictions that were taken on August 4th but predict
the weather for August 6th. Finally, the last column indicates the forecasting web service that
performed the forecast.

The same information appears at the end of the page in graphs. There are two line charts with
high (see Figure A.11) and low temperatures (see Figure A.12) respectively. The X-axis contains
the date of the observations and forecasts and the Y-axis the temperature in Celsius. Observations
are plotted with rectangles and then joined with a thick continuous blue line. Forecasts are plotted
with different shapes and then joined with a thin dashed line. Each of these dashed lines includes
forecasts made by the same web service.

Moreover, the user gets an assessment of each service for a specified city and day. It consists
of the comparison (by means of the mean squared error and the approximation error) of the
ground truth with the forecasting data. As usual, this information is shown in both ways: tables
and graphs. Figure A.13 shows two tables with the mean squared error and the approximation

13

Figure A.11: Graph with high temperatures in the predictions made a specified day page.

Figure A.12: Graph with low temperatures in the predictions made a specified day page.

14

Figure A.13: Errors in the predictions made in a specified day page.

Figure A.14: Table with mean squared errors of previous 5 days.

error respectively. In the tables, the first column has the name of the web service. The second
and third columns demonstrate the errors of the high and low temperatures respectively. The last
column shows the average error, which is an arithmetic mean between the two previous errors.

If we click in the name of the error, we get the errors of the web services for the last 5 days.
With the help of this information, the user discovers the forecasting service which is currently
offering more accurate predictions. This information is showed in a table and a graph. The table
(see Figure A.14) and the graph (see Figure A.15) show the average errors that web services
made each day. The Y-axis of the graph represents the average mean squared error. For instance,
in this example, the most reliable web service is AEMET (because it is the one with the lowest
error) and the worst one is Yahoo.

Appendix A.3. Page of predictions made for a specified day

In the ”predictions made for a specified day” page, users can consult all weather forecasts
made for a specific day (the predictions for this day) and for a specific city. Firstly, the initial form
needs two parameters: the date of forecast (the day we are interested to know the predictions)
and the city. Figure A.16 shows the form.

After filling the form, we get the information as follows. A table with all available forecasts
for this day are shown in Figure A.17. It has 6 columns. The first one indicates the day when
the forecast was made. The second and third columns represent the real observations of the high
temperature and low temperature respectively. Obviously, since all forecasts of this table have
predictions for the same day, these two columns have the same value in all rows. The fourth
and fifth columns contain the predicted maximum and minimum temperature respectively. For
instance, the highlighted row of Figure A.17 contains predictions that were taken on July 30th but
predict the weather for July 31th. Finally, the last column indicates the forecasting web service
that performed the forecast.

15

Figure A.15: Line chart with mean squared errors of previous 5 days.

Figure A.16: Form of the page to consult predictions made for a specified day.

Figure A.17: Table with all the forecasts that have been made for a specified day.

16

Figure A.18: Chart with high temperatures in the predictions made for specified day page.

Figure A.19: Chart with low temperatures in the predictions made for specified day page.

The same information which is contained in Figure A.17, it is shown at the end of the page in
graphs. There are two line charts with high and low temperatures respectively. They are shown
in Figure A.18 and Figure A.19. The X-axis represents the date when forecasts were made and
the Y-axis the temperature in Celsius. All forecasts predict the temperature of the same day. The
difference is that the forecasts were made in different days. Observations of this day are plotted
with rectangles and then joined with a thick continuous blue line. They are shown to be visually
compared with forecasts. Forecasts are plotted with different shapes and then joined with a thin
dashed line. Each of these dashed lines includes forecasts made by the same web service.

The mean squared error (MSE) and approximation error of the forecasting web services (see
Figure A.20), the table (see Figure A.21) and chart (Figure A.22) with mean squared errors of
previous 5 days are shown as it is explained in the previous subsection.

17

Figure A.20: Errors in the predictions made in for specified day page.

Figure A.21: Table with MSEs in the predictions made in for specified day page.

Figure A.22: Graph with MSEs in the predictions made in for specified day page.

18

