Continuous Quality Assessment with inCode

George Ganea™*, loana Verebi**, Radu Marinescu®

4LOOSE Research Group, Universitatea “Politehnica” Timisoara, Bvd. V.Parvan 2, Timisoara, Romania

Abstract

In spite of the progress that has been made over the last ten years in the research fields of software evolution and quality assessment,
developers still do not take full advantage of the benefits of new assessment techniques that have been proposed by researchers.
Beyond social factors, we believe that there are at least two main elements that contribute to this lack of adoption: (i) the insufficient
integration of existing techniques in mainstream IDEs and (ii) the lack of support for a continuous (daily) usage of QA tools. In
this context this paper introduces INCODE, an Eclipse plugin aimed to transform quality assessment and code inspections from a
standalone activity, into a continuous, agile process, fully integrated in the development life-cycle. But INCODE not only assesses
continuously the quality of Java systems; it also assists developers in taking restructuring decisions, and even supports them in
triggering non-standard, complex refactorings. The main focus of the paper is to introduce those features of INCODE that make it
innovative, and to describe its architecture and key design decisions.

Keywords: quality assessment, design quality, design problems, code smells, software metrics, Eclipse plugin

1. Introduction

There is no perfect software design. Like all human ac-
tivities, the process of designing software is error prone and
object-oriented design makes no exception. The flaws of the
design structure, also known as “bad smells” [Fow99] have a
strong negative impact on quality attributes such as flexibility
or maintainability. Thus, the identification, detection and cor-
rection of these design flaws is essential for the evaluation and
improvement of software quality.

In spite of the fact that all of today’s major IDEs provide
extensive quality assurance modules that use metrics to con-
trol design quality, in the last years it became more and more
clear that the major problem when it comes to assessing design
quality is that when metrics are used in isolation, they are too
fine grained to quantify comprehensively one investigated de-
sign aspect [Mar04] (e.g., distribution of system’s intelligence
among classes). Thus, in most cases individual measurements
do not provide relevant clues regarding the cause of a prob-
lem. In other words, a metric value may indicate an anomaly in
the code but it leaves the engineer mostly clueless concerning
the real cause of the anomaly. As a consequence of the previ-
ous remark, in practice it is very hard to correlate an abnormal
metric value with a concrete restructuring measure, that would
improve the quality of the system’s design.

The typical usage scenario of a quality assessment module
(and/or methodology) is currently this: a developer, feeling that
something is wrong with the design/code, is using the QA mod-
ule provided by (or available for) her IDE to compute a suite of

*Corresponding Author
Email addresses: georgeganea@gmail.com (George Ganea),
icanaverebi@gmail.com (Ioana Verebi),
radu.marinescu@cs.upt.ro (Radu Marinescu)

Preprint submitted to Science of Computer Programming

metrics; noticing some abnormal metric values, she must infer
what the real design problem is from the informal description of
the metric’s interpretation model. This is not easy at all, espe-
cially when the analysis occurs long after that code/design frag-
ment has been created, and/or the code was written by someone
else. But even after finding out what the problem is, correcting
the design flaws moves the developer to another world, where
she must compose the proper restructuring solution using the
basic refactorings available in her IDE. This is again a chal-
lenging and painstaking operation.

We believe that this process is so tedious because of two
reasons: (i) metrics used to detect design flaws are only “de-
tection atoms”, and, therefore incapable of pointing out to rel-
evant correction (restructuring) solutions; (ii) refactorings, as
they are used now, are also only the “correction atoms”, and
therefore they do not represent the correction solution for all
but non-trivial design problems.

Certainly, the issue of adoption of academic technology by
the industry is a complex matter. Telea et al. quote senior man-
agers [TVS10] stating that adoption depends on measurable
added value brought by a tool and the corresponding cost. Fur-
thermore, Bessey et al. [BBC10] indicate that adoption might
be challenged by diversity in the language dialects, compilers
and platforms used, as well as social restrictions (dis)allowing
certain modifications, while Kemerer [Kem92] emphasizes that
the learning curve plays also a significant role.

June 11, 2013

In this paper we introduce INCODE!, an Eclipse plugin aimed
to transform quality assessment and code inspections from a
standalone activity, into a continuous, agile process, fully in-
tegrated in the development life-cycle. INCODE supports pro-
grammers with continuous detection of design and code prob-
lems (e.g., duplicated code [Fow99], classes that break encapsu-
lation [Rie96], or misplaced methods). INCODE identifies and
locates specific design flaws as they appear, which improves
over the efficiency of performing code reviews from time to
time, because it allows developers to address a problem at the
best possible moment i.e., when the entire design context is
fresh to them. Furthermore, INCODE provides contextualized
explanations for each instance of a detected problem, and it
guides engineers in correcting the detected flaws.

While the improved efficiency of continuous quality code
analysis over periodic code reviews needs to be rigorously eval-
uated, we believe that it can be used as a legitimate assumption,
which is worthwhile to be rigorously evaluated in the coming
future. Furthermore, in order be truly efficient, continuous as-
sessment needs not only adequate tools, but also a clear process
(methodology). While this paper touches the issue of the as-
sessment process, its main focus is to show that, from a techni-
cal point of view, tools assessing quality continuously are fea-
sible, even when used on large-scale projects.

The rest of the paper is organized as follows: next, we will
illustrate the way INCODE supports continuous quality assess-
ment by means of a typical usage scenario that “interweaves”
current development and quality assessment. Section 3 presents
systematically INCODE’s operation mode and its main features,
followed by a discussion (Section 4) about its architecture and
the key decision that makes it possible for INCODE to run con-
tinuously during development in spite of the complex analysis
that it has to perform. Section 5 discusses time and memory
performance of INCODE. The paper is wrapped-up by a dis-
cussion of related work (Section 6) and a series of conclusive
remarks and a look at future perspectives.

2. A typical scenario of continuous assessment

Before describing in more detail the features of INCODE,
we will illustrate by a simple yet significant example its main
trait: the capacity to automate in a continuous manner the detec-
tion of design problems, as well as its context-sensitive support
for automatic restructuring.

The scenario starts with Lisa, a typical developer, beginning
to write the Rectangle class (see Figure 1% - Step 1) in Eclipse’s
editor window. The very moment she finishes writing the 4 lines
of the Rectangle class and saves the file, a red square — which
is an INCODE marker — appears on the left side ruler of her ed-
itor, next to the class definition. This notifies her that INCODE
has detected a potential design problem. By reading the code,

mech-
update:

'INCODE can be installed using the standard Eclipse
anism for plugin installation, using the following
http://www.intooitus.com/research/incode/

2The sequence of steps in our example are summarized in form of numerical
labels (which we are going to refer to in the following as Step X)

you might have noticed that Rectangle is a class that defines
four public attributes, opening the gates for breaking encapsu-
lation. This problem is known in the literature as Data Class
design flaw [Fow99, Rie96]. In the past we defined metrics-
based techniques, called detection strategies [LMO06] for auto-
matically detecting such design flaws. So, every time Lisa is
changing the file, on save INCODE executes it’s metrics-based
detection rules and displays a red marker for each design flaw
that has been detected in that file.

By noticing the red INCODE marker, Lisa wants to find out
what the problem is. Because INCODE markers behave exactly
like the standard Eclipse ones which signalize compiler errors
or warnings, it comes natural to Lisa to click on it (Step 2) and
find out that the Data Class problem has been detected.

Next, when Lisa decides to find out more about the problem,
the INCODE TIPS view is opened and she can read a detailed
description of what the problem is. One important thing here
is that the description is not a presentation of what Data Class
means in general, but an explanation of why Rectangle, in par-
ticular, is reported by INCODE as a Data Class (see text box
next to Step 2). By reading the text you will also notice that IN-
CoDE TIPS includes a section of Refactoring Tips, which in this
particular case advises Lisa to encapsulate the four attributes
of Rectangle because they have no reason to be declared pub-
lic (as no one is using them from outside the class). Again,
the noteworthy aspect here is the context-sensitive nature of the
refactoring advice.

Finally, there is another thing about this description that
needs to be emphasized: while both the detection of the prob-
lem and the additional description are based on a significant
amount of metrics and further dependency analysis, Lisa is not
required to have an understanding of these in order to use IN-
CoODE. Lisa does not even need to know exactly what a Data
Class is. We believe that this is an essential trait for any QA tool
in order to facilitate a wide adoption by developers: it has to
hide the complexity of the powerful analysis techniques that it
uses under a presentation that is easy to understand by develop-
ers. It’s our tools that have to learn the language of developers,
not vice-versa.

Now, assume that after reading the description of the prob-
lem, Lisa decides to momentarily ignore it and move on, writing
class Client that uses the data members exposed by Rectangle
(Step 3). Again, a red marker appears left to the line where the
definition of method calculate starts. This is because calculate
is affected by the Feature Envy design problem [Fow99], and
INCODE detects it based on the strategy defined in [LMO6].

The first thing that Lisa may notice is that the Rectangle’s
Data Class description has been updated (Step 4a) *; the de-
scription now remarks the usage of Client.calculate using Rect-
angle’s data. But, the most remarkable change is the one that
occurs in the Refactoring Tips part, as now, by the fact that three
of Rectangle’s public members are used from a single external

3Detection strategies are composed of logical metrics-based conditions that
identify those design fragments that are fulfilling the condition

4In case Lisa didn’t close the INCODE TIPS view in the meantime, the up-
date occurs automatically

~

I—"pﬁBl{C class Rectangle { S~
public int x, y;
public int height, width;

public class Client {
n public void calculate (Rectangle r) {
AN int x2 = r.x + r.width;
SN intyz = r.y;
“~_.// do something
P}

® M O Move Method Correction Strategy N

/' Checking initial refactoring conditions \
¥ + Refactoring Algorithm
¥ v Move method

v Move method calculate to Rectangle
+ Removing unused method arguments
v Encapsulating the field x
+ Encapsulating the field y
+ Encapsulating the field height
v Encapsulating the field width

v Refactoring completed without errors
7

\

AN
, [N
f \

\‘? \
A \
public class Rectangle { \

private int Xx, y;
private int height, width; \
S public void calculate () { \
int x2 = x + width; \

int y2 = y;
// do something

‘actangle is a Data Class because:

~Al ¢ the interface of the class consists of many (4) attributes and/or accessors;
o the class has no functional methods

« the non-encapsulated members are not accessed at all from outside the
class!

Refactoring tips:

« Encapsulate the following members: x, y, height, width as they are only
accessed from inside the Rectangle class.

3

Rectangle is a Data Class because:

¢ the interface of the class consists of many (4) attributes and/or accessors;
o the class has no functional methods

¢ the non-encapsulated members are accessed from 1 method (of 1 class)
Moreover, 1 of these methods are affected by the Feature Envy design flaw,
namely:_calculate.

Refactoring tips:

* Encapsulate the following member: height as it is only accessed from inside
the Rectangle class.

* Move each of these 3 members to their respective client class. These
memebers are not used at all within the current class.
* Consider moving calculate to Rectangle as it accesses several members of

the class (i.e. it is a foreign data client).
S

alculate is a Feature Envy because:

* it uses many (3) attributes of Rectangle
« it uses no attributes because the class does not define any attributes!

Important Remark: The method uses attributes from one Data Class, namely
Rectangle. This might be an indication that moving this method (or a part of it)

to class Rectangle would improve the the distribution of responsibilities in your
system.

Quick solution:

N
* "Move method calculate to class Rectangle for a better behavior distribution

Figure 1: The various steps of using INCODE for design assessment, going from writing a piece of code to the eventual restructuring.

class, INCODE can give different refactoring advices (see de-
scription in Step 4a); the initial refactoring suggestion is main-
tained for the height data member, but for the others, due to the
new usage context, there are two options: moving the three data
members to the Client class or vice-versa, move the calculate
method to the Rectangle class.

Beyond the update of Rectangle’s problem description, there
is one even more interesting thing for Lisa to see: the descrip-
tion of the Feature Envy problem detected for calculate (Step
4b). Apart from the characteristics already emphasized while
presenting the Rectangle’s Data Class description (i.e., context-
sensitivity, continuous update, refactoring advices), there are
two additional aspects of INCODE TIPS revealed here: (i) the
description contains a remark on the fact that the “foreign” data
used by calculate are defined in a class that has been detected as
Data Class; (ii) it has an additional refactoring section, called
Quick Solution indicating that INCODE has detected an actual
refactoring that Lisa can launch in order to solve the Feature
Envy problem. In other words, INCODE TIPS supports the de-
sign improvement by (i) providing information about meaning-
ful correlations detected between various design flaws and (ii)
by identifying cases where “clear-cut” restructuring solutions
exist and consequently by providing support for automating the

code transformation process.

If Lisa decides to solve the problem by moving calculate
to Rectangle, she selects the link below Quick Solution which,
in result, will start the restructuring process (Step 5). As seen

in Figure 1 the restructuring process consists of a sequence of
basic refactorings, which lead to a significantly better solution

(Step 6) than a simple restructuring like the Eclipse’s built-in
Move Method refactoring.

3. Quality Assessment with INCODE

We used the previous section to illustrate INCODE’s most
frequent usage scenario i.e., quality assessment performed con-
tinuously during development. Next, we are going to cover sys-
tematically INCODE’s main features as a quality assurance tool.

INCODE Markers. When the Eclipse workbench is started, IN-
CODE begins to analyze in background the source file currently
active in the editor. As seen in Figure 2, when a design problem
is detected, INCODE places a red marker on the ruler (see’ a),
next to the affected class or method. As mentioned before, IN-
CODE markers are similar to those used by Eclipse to indicate
compiler errors or warnings. The presence of these markers is
very dynamic: as new code is written, or code is modified new
markers may appear, or existing markers may disappear.

INCODE TIPS View. By launching the quick fix for an INCODE
marker (see b), the INCODE TIPS view (see ¢) is opened, pro-
viding a wealth of contextualized information on the particular

SIn this entire passage we will refer the various parts of Figure 2 by the
corresponding labels depicted there

® inCode Overview &3

= Overview Pyramid :HP

SIINOP 65
[EX7lINOC 560
[EREINOM 7100 NOM EERL]
0.16 LOC 97881 26889 CALL 0.67 ~
FO \
-

|J| FinureEventjava 3

M public class FigureEvent extends EventObject {

@ Data Class
4 Add default serial version ID

<4 Add generated serial version ID

@ Add nings 'serial’ to 'F

>>>>> €yeLa

JHotDraw7
Context-sensitive
description

® inCode Overview | . inCode Tips 53

FigureEvent is a Data Class because:

o the interface of the class consists of many (4) attributes and/or accessors;

o the class has only few (1) functional methods;

« the non-encapsulated members are accessed from 10 methods (of 7 classes) =~

Refactoring tips:

o Enc late the f
inside the FigureEvent class.

7 inCode Tips

N .
Interpretati?x\\ of the Overview Pyramid for modjé \
-

inCode Tips view \

members: getOldValue, getNewValue as they are only accessed from

inCode Overview [

Following Design Problems have been (
~ Data Class [16] Gravity

scores
Double(14] A~
Example 6.67)

Viewport[6.41]
FindDialog (5] Summary of

Float[4.67) design problems
AbstractHarmonicRule [4.08)

.
.
16212 18157 .
Ve
.
» v
@ Heg 0
¥ i Methods accessing public members
v (@ PresentationFigureHandler
@ arealnvalidated (1 references)
PSRN v & QuadTreeEventHandler

A = figureChanged (1 references)

v (2 EventHandler
¥ i call locations
< getlnvalidatedArea() [line 313]

« Consider moving attributeChanged to FigureEvent as it accesses several members of the class

(i.e. it is a foreign data client).
Refactoring advice

Navigable context

Figure 2: INCODE marks automatically, and updates continuously, code entities with design problems. The INCODE TIPS view can be used to better understand the

causes, context and possible remedies for a particular instance of a design problem.

cause (see d) of a detected problem. Although the design prob-
lems are detected using metrics-based rules [LMO06], the de-
scription of the problem is in terms of design concepts, rather
than numbers; in other words, the description is hiding the un-
necessary complexity of working with software metrics. Thus,
we list the actual entities and relations that contribute to a spe-
cific design flaw, as well as the actions that the user can take to
improve on these. For example, in the case of a Feature Envy,
where the detection rule states that: (i) the method uses many
external attribues, from few classes and (ii) it uses none or close
to no attributes from its class [LMO6], we list the actual external
attributes that are used, grouped by class and also the attributes
from its own class that the method is using, if any. Also, the
description contains a set of hyperlinks that enable the devel-
oper to “zoom-in” in exploring in detail the relevant context of
that problem (see e). Furthermore, the description may contain
significant correlations of this problem with other design flaws
detected by INCODE elsewhere in the project, as you have seen
in Figure 1 - 4b).

The other significant part of the INCODE TIPS view is the
one that provides concrete refactoring advices (see f) i.e., hints
on how that particular problem instance can be corrected, by
taking into account the entire context of dependencies of that
class/method. Furthermore, if INCODE detects that in a given
context a predefined Eclipse refactoring, or a composed restruc-
turing (defined by INCODE) can be applied, the suggested code
transformation can be triggered directly from the INCODE TIPS
view, as seen in Figure 1. Currently, the set of refactorings that
can be triggered automatically is limited, but we are working
on extending both the number of contexts where INCODE can
perform a design improvement, as well as the number of per-
formable restructurings that involve the correlation of multiple
atomic refactorings [Ver09].

Detected problems. As mentioned before, we believe that met-
rics used in isolation cannot help in detecting real design prob-
lems [Mar04]. Therefore, in INCODE we use detection strate-
gies to quantify design problems [LMO06]. Currently INCODE

detects four well-known design problems related to an improper
distribution of intelligence among classes, namely God Class,
Data Class, Feature Envy and Code Duplication ®. These four
analyses where carefully chosen as to stress the most compu-
tation intensive aspects of our model and also because their
complexity is comparable to the rest of the design flaws from
[LMO6]. Moreover, these problems are oftentimes correlated
and as such INCODE can use these correlations in order to pro-
vide more meaningful information to the user. Thus, while the
detection is based on object-oriented metrics, developers do not
have to interact directly with metrics. Instead, they can reason
about the quality of their design at the conceptual level that is
more convenient for them.

INCODE Overview. While the continuous assessment mode is
what makes INCODE outstanding, we also need a way to “zoom-
out” in order to see the global design quality picture for a sys-
tem. INCODE addresses this need by providing a view that re-
veals the overall quality of a system, namely INCODE OVERVIEW
(see Figure 2). This view has two components: (i) the Overview
Pyramid (see h) that captures the key characteristics of the sys-
tem/package in terms of complexity, coupling and shape of class
hierarchies [LMO06]; and (ii) a categorized list of detected de-
sign problems (see i). From here, the problematic classes and
methods can be inspected closer in order to understand for each
case the particular causes and the suggested correction steps.
The number of low-level design problems can be overwhelm-

ing when analyzing large systems. Therefore in INCODE we
compute a gravity score (see Figure 2) for each of the four de-
sign problems, which indicates for each detected instance how
severe the symptoms of the design problem are. As the de-
tection of the design problem is based on metrics [LMO06], the
gravity scores are computed based on how much the various
key measures are beyond the thresholds used in the detection
rule. For example, a Data Class instance with 40 public at-
tributes has a (significantly) higher gravity score than another

A detailed description of these analyses can be found in [LMO6]

instance with only 6 public attributes. In order to make the grav-
ity scores comparable, each factor that enters that gravity score
is normalized [Mar12], based on a threshold for each metric (a
more detailed discussion on how thresholds are selected can be
found in [LMO6] and [Tri08]). Thus, the categorized lists of de-
sign problems are sorted descending based on the gravity score
(see i). This allows developers to prioritize the inspection and
(hopefully) the correction of the most critical design fragments.

4. INCODE’s Architecture

At the surface, INCODE is simply an Eclipse plugin for code
analysis, with a focus on the detection and correction of design
problems. However, looking closer at its internals, INCODE is
far more than what developers can perceive by interacting with
the user interface. In this section we describe the architecture
of INCODE from three different perspectives: first, we will de-
scribe how INCODE interacts with the Eclipse ecosystem i.e.,
how it interacts with and benefits from the comprehensive in-
frastructure provided by Eclipse. Second, we will reveal that
INCODE is not only an analysis tool: it is an analysis frame-
work, that easily allows to plug-ing various analysis ranging
from metrics, to software visualizations, detection rules for de-
sign problems and complex structure-based analyses. Last, but
not least, Section 4.3 describes the design decisions that make it
possible for INCODE to run continuously, without affecting the
current development activities, an extremely challenging task
especially for large-scale projects.

4.1. INCODE as an Eclipse plugin

As seen in Figure 3, INCODE has the following workflow:
based on the continuously updated Java model, extracted from
the source by Eclipse JDT, we create our own model with the
subset of design information required for computing the vari-
ous metrics, for defining and running the higher-level detection
strategies and eventually for performing the needed refactor-
ings.

JDT Model

lefine Detection
- Strategies
Code
Restructurings

extract
>

apply

Figure 3: INCODE’s Workflow

Figure 3 also reveals another important aspect: the higher-
level analyses (Detection Strategies) depend on the metrics com-
ponent, they do not interact directly with the Eclipse API.

INCODE is an Eclipse plugin; the first pillar on which IN-
CODE relies is the core of the Eclipse Platform, from which it
mainly uses three components: (i) the workspace to get access
to the resources of the Eclipse projects and their interdependen-
cies; (ii) the workbench for a smooth integration of INCODE’s
user-interface elements; and (iii) the incremental project build
mechanism of Eclipse. The workbench is used for setting the

markers which INCODE uses to annotate the Java source files
with the detected design problems, and for defining the views
that INCODE needs for presenting its analysis results. INCODE
defines its own incremental builder in order to be able to selec-
tively update its cached information. The incremental project
builder is used to get the resources that changed since the latest
build and also the resource change delta, which describes the
actual changes on a particular resource.

INCODE’s Dependencies on Eclipse JDT. The most important
dependency of INCODE is on the plugins belonging to the Eclipse
JDT project i.e., the plug-ins that implement a Java IDE. IN-
CODE needs information about the program elements that are
involved in its various metrics, detection rules or visualizations.
Most of this information is provided by the Java Model, which
is Eclipse’s representation of a Java project, providing a light
weight model of program elements like package fragments, com-
pilation units, types, methods efc..

However, the Java Model is a only a coarse-grained model
of Java programs, ranging from java project to type members.
Many analyses in INCODE need more in-depth information like
methods calls and variable accesses. For this, we need to build
the Abstract Syntax Tree (AST) of a file , in which all pro-
gram elements are available and all bindings (cross-references)
are resolved. Because building the AST of a file comes at the
price of a considerable performance overhead, INCODE relies
on ASTs only when genuinely needed.

4.2. INCODE as an analysis framework

INCODE is more than an Eclipse plugin that computes met-
rics and detects design problems. In the past we developed a
wealth of metrics and quality assessment techniques using the
IPLASMA analysis environment [MMM ™05, LM06]. Therefore
INCODE is designed to (i) inherit that vast number of analyses
defined and implemented in the past; (ii) make it easy to cre-
ate new analyses on top of the existing ones; and (iii) keep to a
minimum the dependency of analyses on the Eclipse platform.

In order to achieve these goals, concrete analyses must not
be defined in terms of a concrete meta-model; therefore IN-
CODE is designed with an additional abstraction layer on top of
a concrete meta-model, namely a meta-meta model [BGO1]. As
seen in the bottom-right side of Figure 4 every type of program
entity is modeled as an AbstractEntity that has a specific Entity-
Type; for example, each class is an AbstractEntity object sharing
a “class” EntityType object. Each EntityType can be character-
ized by a set of relations and properties that can be computed
on program entities of a particular type. Recalling the exam-
ple of the “class” EntityType object, some examples of relations
(groups) are the “set of methods defined within a class” or the
“set of classes that are extending it”, while examples of prop-
erties for a “class” EntityType can be its“number of attributes”
or the “is abstract” property. Thus, the inCode meta-model is
an instantiation of our meta-meta model, we define what entity
type can hold what kind of properties (e.g. a class can hold the
metric NOM) and what kind of relations (e.g. a method can
hold the group of methods it calls). In general, the meta-meta-
modelling approach is similar to the one found in the MOOSE

1.* 1.*

1.*

RelationBuild

FilteringRule Property(P
+ isTrue(AbstractEntity) —[> + compute(AbstractEntity) + build(AbstractEntity)
: boolean : ResultEntity . GroupEntity
i . Concrete Concrete Concrete
Derlygd plugins Filter Property Relations
(builtin terms of | classes classes classes
core plugins,

therefore reusable)

’

} i
A\l »
Core plugins Core Filter Core Property Core Relations
(abstraction of the classes (metric) classes classes I
meta-model)
S] - plugin
AN | P dictionaries

s

Pid theType EntityType
Ve

——> Wrapper ——> AbstractEntity

Figure 4: The INCODE

analysis environment [NDGO5], namely the FAMIX family of
language-independent meta-models [DTDO1]. As opposed to
FAMIX, where the meta-model is explicitly defined via a set
of classes, inCode’s meta-model is rather implicit, as all model
elements are instances of the Wrapper class. Each Wrapper in-
stance can have a different Entity Type and as a result will be able
to have different properties and relations. For example a Wrap-
per instance that wraps an IMethod from the JDT model will
always have the “method” EntityType and will be able to have
properties such as LOC, CYCLO and relations such as “called
methods” and “’client methods”.

The extraction and computation of these properties and re-
lations is encapsulated in different classes associated with a par-
ticular EntityType. Thus, RelationBuilder (see Figure 4) is defin-
ing the interface for all INCODE plugins that will return a group
of program elements (AbstractEntity objects) that are associated
in some way with the program element passed as a parameter;
each concrete RelationBuilder defines a relation between a pro-
gram element (e.g., a class) and a set of other program elements.

Similarly, PropertyComputer is an interface for all the IN-
CODE plugin classes that will compute and return some prop-
erty for a given program element (passed as a parameter). All
metrics are implemented in INCODE as such PropertyComputer
classes. A special type of PropertyComputer plugins are those
that return a boolean result (i.e., true/false, like the aforemen-
tioned “is abstract” property). These INCODE filters are im-
portant because all the metrics-based rules for detecting design
problems (e.g., God Class, Feature Envy etc.) are in fact such
boolean properties.

All these concrete properties and relations fall into two cat-
egories, depending on the way they are computed/extracted:

1. Core Plugins — these are the property and relation plug-
ins that provide information by extracting it directly from
the code, by using a parsing infrastructure. For example,

N

ResultEntity GroupEntity |

system of plugins

the “set of methods defined within a class” is such a core
relation plugin and “method is abstract” is a core prop-
erty/filter plugin because they both extract information
directly from the Eclipse Java Model.

2. Derived Plugins — these are all the property and relation
plugins that can be defined on fop of the core plugins.
For example, the “Number of Methods (NOM)” metric
is a derived property plugin because it can be computed
as the cardinality of the “setr of methods defined within a
class” (core) relation plugin.

The most important aspect about these two types of IN-
CODE plugins is that the number of core plugins — which are
dependent on the parsing infrastructure, and thus not reusable
— is significantly lower than the rest of the plugins, which are
built directly or indirectly on top of these (see Figure 4). Thus,
by designing this system of plugins we were able to reuse the
wealth of (derived) plugins (i.e., most of the metrics and all
detection strategies) defined in IPLASMA [MMM™05, LMO06].
We could not reuse the core plugins from IPLASMA, as Recoder
[LHOO] was used in order to extract data.

4.3. INCODE as a continuous code analyzer

One of the biggest implementation challenges is to ensure
that INCODE responds to every change in the program with-
out affecting the overall performance of the Eclipse workbench.
While Eclipse provides mechanisms for tracking changes, the
actual source-code analysis that has to be done behind the scene
(e.g., metrics computation or clone detection) is resource in-
tensive, both in terms of computing time and memory usage.
Therefore, we took a series of design decisions without which
INCODE would have never been more than a good idea. We are
going to briefly enumerate these decisions here:

INCODE always works on a separate thread. In order to have
continuously up-to-date results, we defined listeners on two
types of events: (i) code changes in the current file, that lead
(on save) to the launch of the Java Builder; (ii) changes of the
current/selected file in the editor. When these events occur, IN-
CODE starts a marker job by which the current file is analyzed.
This job always runs on a new separate thread; this ensures that
the user-interface is always responsive. Moreover, in order to
avoid the danger of multiple marker jobs being simultaneously
active, we use concurrent data structures and define a mecha-
nism which cancels all running marker jobs on a file, whenever
the editor’s focus is switched to a different source file.

INCODE works with lightweight model objects. In INCODE all
analyses assume a certain source-code model. In a static anal-
ysis environment, we would have employed the Eclipse Java
Model (and ASTs) only as a fact extractor for populating our
own model. But this is not feasible when INCODE has to re-
act permanently to code changes. The solution to staying con-
nected to the constantly updated Eclipse model, while still keep-
ing the definition of analyses decoupled from the Eclipse API,
is to wrap Java Model entities into model entities of the IN-
CODE meta-model (see Wrapper class in Figure 4). The Wrap-
per class is the link between the iPlasma meta-meta model and
Eclipse JDT. INCODE creates a Wrapper instance for every JDT
model element instance (IProject, IPackage, IType, IMethod,
IField). When the JDT model changes (usually during an incre-
mental build, triggered by a modify-save operation), the incre-
mental builder that INCODE defines gets notified of the changed
JDT model elements and as a result INCODE can discard “dirty”
wrappers that contain references to the now obsolete JDT model
elements.

Minimizing the usage of Eclipse ASTs during model construc-
tion. Assessing design quality requires a detailed analysis of
cross-references which occur at the method level, by means of
method invocations and variables accesses; and this requires a
complete parsing of the source-file, and visiting the resulting
ASTs. Knowing that, in Eclipse, constructing an AST is ex-
tremely time consuming, we optimize the process by visiting
each AST only once; even if the initial goal for creating an
AST is to extract the calls and accesses for one method, IN-
CODE prefetches the calls and accesses for all methods of that
file, and after that we immediately destroy the AST object.

Intelligent caching. Many metrics are based on time-consuming
cross-referencing information. Therefore, INCODE is designed
to avoid any unnecessary (re-)computations, by means of caching
and selective update. Thus, for each entity, the core relations
(e.g., group of calls) are cached, which allows properties (e.g.,
metrics) to be recomputed very fast. When a change occurs, we
identify the program entities that are affected by the respective
change and consequently update only these entities, ensuring
that no unnecessary computation is performed. Caching comes
at a price: memory consumption, which can become an issue
for large projects. To solve this problem, we engineered a solu-
tion that keeps references only to light-weight model elements

from the JDT, while the heavy AST nodes (necessary only for
local variables and parameters), are computed on demand and
then disposed as soon as they are not needed. As a result, IN-
CODE runs smoothly even on large Java projects with a minimal
performance overhead.

4.4. Effort

INCODE is the result of more than 18 person months of ef-
fort, an estimate that does not include the initial learning curve
of Eclipse and also iPlasma. While we could reuse a large part
of the iPlasma framework (see 4.2), implementing the contin-
uous assessment platform required a large amount of effort,
resulting in a code base roughly the same size of the reused
iPlasma code base (out of a total of approximately 38.000 lines
of code, 18.000 represent the analysis framework). INCODE
was developed in several iterations: (i) we started with dummy
examples to see if the major challenges can be overcome, (ii)
implemented a first running version and (iii) went through ma-
jor refactorings a couple of times, in order to meet requirements
of speed of execution and memory footprint, ease of use and
smooth IDE integration.

5. Performance

So far we introduced the concept of continuous quality as-
sessment and presented the key features of INCODE as well its
general architecture. Next, we will evaluate INCODE and see,
considering the significant number and complexity of the anal-
yses used to asses a system’s quality, if is it feasible to have
INCODE being used by developers for continuous assessment
i.e., run INCODE and still perform in parallel “usual” develop-
ment, without a negative performance impact?

Our measurements asses the execution time of opening a
file in the editor. As described in the previous sections, open-
ing a file in the editors triggers INCODE, which analyzes all
the program elements defined in that file, in order to detect de-
sign problems. Note that although INCODE is focused only on
assessing the program elements in the current file, the compu-
tations have system-wide implications; for example, checking
for code duplication requires each method in the file to be com-
pared with all the other methods in the entire system. Thus,
we conducted these measurements as follows: we selected five
well-known open source systems (ranging from average sized
projects, of over 100.000 lines of code and large projects, that
have over 1.4 MLOC), for each of the five systems we selected
two source files based on their size; more exactly for each sys-
tem we picked up the largest file (Sample I) and a random,
average size file (Sample 2). Using these files we measured the
execution time of INCODE on three scenarios for each of the
projects: (i) open Sample I immediately after starting Eclipse;
(i1) open Sample 2 immediately after starting Eclipse; (iii) open
Sample 2 after Sample 1 i.e., open a file after INCODE has al-
ready analyzed another file. This is the reason why we exer-
cised the third scenario i.e., measuring the execution time for
the second opened file, as we expect the INCODE execution
times on the subsequent files to be lower than the ones needed
for the analysis of the first file.

Execution Time for Sample 1

Sample 1 with heap size = 2GB
System " —

(largest file) no duplication check

check duplication

JHotDraw 7.4.1 137 KB 10s. 18s.
JEdit 4.3pre18 148 KB 10s. 28s.
ArgoUML 0.24 128 KB 9s. 25s.
Vuze 4511-23 151 KB 21s. 99s.
Eclipse - JDT 3.3.1 373 KB 16 s. 233s.

(random file of

Execution Time for Sample 2

Sample 2 (heap size = 2GB)

. no duplication check opened after Sample 1
average size
verage size) check duplication (check duplication)

21 KB 3s. 10s. 1.2s.
6 KB 7s. 12s. 09s.
4 KB 2s. 17 s. 0.4s.
3 KB 2s. 81s. 0.1s.
4 KB 1s. 212s. 0.1s.

Figure 5: Time performance when working with INCODE in continuous mode

By analyzing the numbers summarized in Figure 5 we can
make the following observations ”:

e The execution time dramatically decreases to a marginal
value (i.e., around a second per file) when a file is opened
after another file has been analyzed. While the numbers
in Figure 5 show the case where the average sized file
is opened after the largest file, we made similar observa-
tions even when inverting the order of opening the files.

e When a file is first analyzed, a significant amount of time
is used by checking for code duplication; and the time is
substantially increasing when the project is large. This is
expected considering the previous remarks. However, for
the medium-sized projects the INCODE’s “first-opened”
execution time is below 30 seconds, even for the largest
file and even when code duplication is checked. While 30
seconds may seem a long time, remember that INCODE
runs on a separate thread (see Section 4.3), which means
that the developer is never kept waiting by the INCODE
thread. Developers can perform their work in parallel
with INCODE. Thus, these execution times should be un-
derstood simply as the time in which INCODE works in
parallel with the developer.

6. Related work

The work described in this paper is primarily related with
other tools and approaches that are focused on quality assess-
ment in general, and in particular with those that investigate
how the design of object-oriented systems can be better as-
sessed and improved.

Techniques for Quality Assessment. In the literature on object-
oriented design we find many definitions of design rules and
heuristics [Rie96, Mey97, Mar02], as well as a significant enu-
meration of design flaws [Rie96], usually called bad smells
[Fow99] or anti-patterns [BMMMO98]. Unfortunately, in almost
all cases, these are defined informally, which makes their auto-
matic detection hardly possible. As a result, a significant num-
ber of approaches have been proposed for detecting such de-
sign problems. Ciupke [Ciu99] proposes an approach in which

"The entire evaluation, including all performance measurements, has been
performed on a MacBook Pro, Intel Core 2 Duo processor at 2.2 GHz, and 4
GB RAM (@667 MHz)

the rules are specified in terms of queries, usually implemented
as Prolog clauses, while Emder and Moonen propose an ap-
proach based on detecting structural regularities of code smells
[vMO02]. In this paper, we follow a metrics-based approach like
the one that we defined in [Mar04] and which has been contin-
ued by Munro [Mun05] with a systematic description of smells
and by Lungu [Lun04] with an attempt to sort potential in-
stances of design problems, an approach which is related to the
gravity score that we use in INCODE. More recently, Moha et
al. proposed DECOR [NM10], a comprehensive framework for
the specification design problems in form of combinations of
metrics and other structural characteristics; based on DECOR
the author generates a number of detection techniques for a set
of specific design problems. While having efficient assessment
techniques is essential, it is not sufficient from the point of view
of quality improvement. Therefore, in the last years we notice
a significant tendency towards approaches that bridge the gap
between the detection and the correction of design problems,
like JDeodorant [MF07, NT09].

Tools for Quality Assessment. When it comes to tools for qual-
ity assessment we have to distinguish between two categories:
standalone QA tools and tools integrated in IDEs. There are
a number of commercial standalone tools like Klocwork In-
sight [Klo10], Structure 101 [Sof10], as well as dedicated open-
source QA tools like PMD [CopOS] or Checkstyle [ECK10].
Furthermore there is also a set of source code analysis envi-
ronments like MOOSE [DGNO5], Sonar [SoulQ] or ConQAT
[FDO6]. All of these are very mature, feature-rich tools which
contain many innovative QA techniques. However, they are
separated from the place where the code is produced, namely
the IDEs. Thus, there is an unfortunate separation between
quality assessment and the actual development, and consequently
a separation between the people who write the software and
those who assess its quality. As a result, the feedback loop be-
tween code and reviews is weak and inefficient, as developers
learn about the various design problems only from time to time
(i.e., after each code review), and usually only long after the
code has been written. This makes it very hard to solve all prob-
lems, because of the many problems that cumulate over time;
and it’s also hard to solve them efficiently because the context
of that design fragment is probably long forgotten.

Because of this drawback, many of the aforementioned tools
seek some form of integration with the development process,
either by providing means of integration in the build process
[Klo10, Soul0] and/or by integration in IDEs [Klo10] [CopO05]

[TCCO8]. While the integration in the build process is definitely
a step forward in the right direction — Sonar being a glorious
[Sou10] illustration of this category — it still has the disadvan-
tage that all problems are reported in a centralized manner and
most of the times they lack providing the exact context of a de-
sign problem.

Concerning the quality assessment tools that are integrated
in IDEs in general and in Eclipse in particular, the biggest prob-
lem is that their level of integration is very shallow. Most of
these are de facto standalone tools that lack any synergy [Zel07]
with the other components of the development environment.
In almost all cases the analyses have to be triggered by the
developer and thus do not run continuously during develop-
ment. In Eclipse one notable exception is the Checkstyle plug-
in [ECK10] that detects code-style violations by using a project
builder, which means that whenever the build process is started
the files are analyzed by Checkstyle as well. This plugin has the
same continuous analysis approach like INCODE, however, the
problems that it detects are more related to coding style (e.g.,
code conventions) than to object-oriented design. Other tools
such as [EKKMO08] use Eclipse’s incremental builder in order to
maintain and query an XML fact file database of cross-artifact
information.

One more remark: all of today’s major IDE’s provide qual-
ity assurance modules that use metrics to control design quality
[Met10, Ins10, Gmb10]. However, in the last years it became
more and more clear that when metrics are used in isolation
they are too fine grained to quantify comprehensively one inves-
tigated design aspect (e.g., distribution of system’s intelligence
among classes). Thus, in most cases individual measurements
do not provide relevant clues regarding the cause of a prob-
lem. In other words, a metric value may indicate an anomaly
in the code but it leaves the engineer mostly clueless concern-
ing the real cause of the anomaly. Consequently, in practice it
is very hard to correlate an abnormal metric value with a con-
crete restructuring measure, that would improve the quality of
the system’s design.

7. Lessons learned

The main requirement of INCODE is that it must run in a
timely matter and that it should not slow down the development
process. We will detail a few of the lessons learned while try-
ing to accomplish these goals and also how it could be further
improved.

The biggest performance improvement was encountered when
we decided to wrap Java Model elements, rather than an ASTNode,

in an attempt to give up the memory hungry ASTs completely.
This was not 100% achievable mainly because the Java Model
does not have any cross-reference information. We still needed
the AST for this type of information (called methods, return
type), but we decided to cache all the information the parsed
AST has to offer. Also, when constructing the AST of a method
in a file, we extract the AST information for all the other meth-
ods of the file, as the AST was already built. After all the in-
formation is extracted from the AST, it is discarded in order to
make room for the next file.

To further enhance performance, the authors would turn to
Eclipse itself. Eclipse builds its own AST (for the java file cur-
rently open in the editor) that is not accessible via the API. Tool
developers can not reuse this AST and must build their own.
This is obviously suboptimal, especially considering the fact
that a given Eclipse user could have any number of QA tools
installed, and each tool has to build its own AST. Alternatively,
the Java Model could provide type and type members cross-
reference information, thus eliminating the need for expensive
ASTs.

As an alternative solution to the Eclipse improvements men-
tioned earlier, in order to avoid rebuilding the ASTs, we could
use aspect oriented programming to define a join point in Eclipse’s
internal AST builder, so that we would avoid an AST rebuild.

8. Conclusions and future work

In this paper we state that quality assessment must be trans-
formed into a continuous, largely automated, process which
comes closer to the daily development activities and implic-
itly closer to developers. In addition to periodical code reviews
we need means to monitor constantly the evolution of design
quality. In this context, we introduced INCODE as a means to
automate such a continuous quality assessment process, which
is integrated in the development life-cycle. We believe that IN-
CODE will increase the productivity of programmers and the
quality of their projects in two ways: (i) by warning developers
about the occurrence of a design problem as it appears, which
is far more efficient than the classic code inspections; and (ii)
by providing contextualized explanations for each instance of a
detected problem, instead of confronting programmers with just
dry numbers (i.e., abnormal metrics values), which are hard to
interpret in a way that leads to real code/design improvements.

While INCODE is currently detecting seven well-known de-
sign and architectural problems we have shown that it is built
on a solid and flexible architecture that will allow us to rapidly
increase the number of quality analyses in the coming months.

Moreover, INCODE can be successfully used on very large projects

of 1.4 MLOC, like Eclipse JDT.

At the same time, the continuous detection of design prob-
lems needs to be complemented by a continuous approach for
restructuring the flawed design fragments. Currently, perform-
ing any code restructuring, except for the atomic refactorings,
is still a manual, time-consuming and risky process, that in-
volves extensive and costly human expertise. We plan to extend
the correction component in INCODE by going beyond simple
refactorings. This correction component is envisioned to act as
a “wizard” that guides the developer through a contextualized
correction plan that will be defined for each design flaw. An
incipient form of a correction plan has been already defined in
[Ver09] and [TMO05] and implemented in INCODE (see correc-
tion step in Figure 1 but we need to significantly extend both
the number of contexts where INCODE can perform a design
improvement, as well as the number of performable restructur-
ings that involve the correlation of multiple atomic refactorings.

Finally, probably the most important aspect of the future
work, is to perform an extensive evaluation concerning the us-

age of INCODE and, more general, of employing a continuous
quality assessment approach. We intend to perform in the close
future a series of exploratory studies that would address the fol-
lowing research questions: (i) Does a continuous quality as-
sessment approach improve the design quality of software, over
traditional code reviews? (ii) Does the systematic usage of IN-
CODE lead to less new design problems (as a result of improv-
ing the design skills of developers)? (iii) How does the usage
of INCODE affect programmers’ productivity?

References

[BBCT10]

[BGO1]

[BMMMOS]

[Ciu99]

[Cop05]

[DGNO5]

[DTDO1]

[ECK10]

[EKKMO8]

[FDO06]

[Fow99]
[Gmb10]
[Ins10]
[Kem92]
[Klo10]

[LHOO]

[LMO6]

[Lun04]

[Mar(2]

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton,
Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak,
and Dawson Engler. A few billion lines of code later: using static
analysis to find bugs in the real world. Communications of the
ACM, 53(2):66-75, 2010.

Jean Bézivin and Olivier Gerbé. Towards a precise definition of
the OMG/MDA framework. In Proceedings of Automated Soft-
ware Engineering (ASE’01), pages 273-282, Los Alamitos CA,
2001. IEEE Computer Society.

William J. Brown, Raphael C. Malveau, Hays W. McCormick,
III, and Thomas J. Mowbray. AntiPatterns: Refactoring Soft-
ware, Architectures, and Projects in Crisis. John Wiley Press,
1998.

Oliver Ciupke.
object-oriented reengineering.
(USA), pages 18-32, 1999.
Tom Copeland. PMD Applied. Number 0-9762214-1-1. Centen-
nial Books, 2005.

Stéphane Ducasse, Tudor Girba, and Oscar Nierstrasz. Moose:
an agile reengineering environment. In Proceedings of
ESEC/FSE 2005, pages 99-102, September 2005. Tool demo.
Serge Demeyer, Sander Tichelaar, and Stéphane Ducasse.
FAMIX 2.1 — The FAMOOS Information Exchange Model.
Technical report, University of Bern, 2001.
The Checkstyle Plugin for Eclipse.
cs.sourceforge.net/, 2010.

Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira
Mezini. Defining and continuous checking of structural program
dependencies. In Proceedings of the 30th international confer-
ence on Software engineering, pages 391-400. ACM, 2008.

T. Seifert F. Deissenboeck, M. Pizka. Tool support for continu-
ous quality assessment. In IEEE Computer Society Press, edi-
tor, 13th IEEE International Workshop on Software Technology
and Engineering Practice, volume 076952639X, pages 127-136,
2006.

M. Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

Odysseus Software GmbH. Stan - structure analysis for java.
http://stan4j.com/, 2010.

Instantiations. CodePro
http://www?2.instantiations.com/codepro/analytix, 2010.
Chris F. Kemerer. Now the learning curve affects case tool adop-
tion. Software, IEEE, 9(3):23-28, 1992.
Klocwork. Klocwork
http://www.klocwork.com/products/insight, 2010.
Andreas Ludwig and Dirk Heuzeroth. Metaprogramming in the
large. In Jarzabek (Eds.), Generative and Component-Based
Software Engineering. Lecture Notes in Computer Science, pages
443-452. Springer, 2000.

Michele Lanza and Radu Marinescu. Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

Mircea Lungu. Conformity strategies: Measures of software de-
sign rules. Master’s thesis, Politehnica University of Timisoara,
September 2004.

Robert Cecil Martin. Agile Software Development. Principles,
Patterns, and Practices. Prentice-Hall, 2002.

Automatic detection of design problems in
In Proceedings of TOOLS 30

http://eclipse-

analytix.

insight.

10

[Mar04]

[Marl2]

[Met10]
[Mey97]

[MFO07]

[MMM*05]

[Mun05]

[NDGOS5]

[NM10]

[NTO9]

[Rie96]
[Sof10]

[Soul0]
[TCCO08]

[TMO5]

[Tri08]

[TVS10]

[Ver09]

[vMO2]

[Zel07]

Radu Marinescu. Detection strategies: Metrics-based rules for
detecting design flaws. In 20th IEEE International Confer-
ence on Software Maintenance (ICSM’04), pages 350-359, Los
Alamitos CA, 2004. IEEE Computer Society Press.

R. Marinescu. Assessing technical debt by identifying design
flaws in software systems. IBM Journal of Research and Devel-
opment, 56(5), 2012.

Eclipse metrics plugin. http://sourceforge.net/projects/metrics/,
2010.

Bertrand Meyer. Object-Oriented Software Construction.
Prentice-Hall, second edition, 1997.

A. Chatzigeorgiou M. Fokaefs, N. Tsantalis. Jdeodorant: Identi-
fication and removal of feature envy bad smells. In IEEE Com-
puter Society Press, editor, 23rd IEEE International Conference
on Software Maintenance (ICSM’2007), pages 519-520. IEEE
Computer Society, IEEE Computer Society Press, September
2007.

Cristina Marinescu, Radu Marinescu, Petru Mihancea, Daniel
Ratiu, and Richard Wettel. iPlasma:an integrated platform for
quality assessment of object-oriented design. In Proceedings
of the 21st IEEE International Conference on Software Main-
tenance (ICSM 2005), pages 77-80, 2005. Tool demo.

M.J. Munro. Product metrics for automatic identification of “bad
smell” design problems in java source-code. In IEEE Com-
puter Society Press, editor, Proceedings of the 11th International
Software Metrics Symposium, September 2005.

Oscar Nierstrasz, Stéphane Ducasse, and Tudor Girba. The story
of moose: an agile reengineering environment. In Proceedings of
the 10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on Founda-
tions of software engineering, ESEC/FSE-13, pages 1-10, New
York, NY, USA, 2005. ACM.

Laurence Duchien Anne-Francoise Le Meur Naouel Moha,
Yann-Gaél Guéhéneuc. Decor: A method for the specification
and detection of code and design smells. IEEE Transactions on
Software Engineering, 36(1):20-36, January 2010.

Alexander Chatzigeorgiou Nikolaos Tsantalis. Identification of
move method refactoring opportunities. /EEE Transactions On
Software Engineering, 35(3):347-367, May/June 2009.

Arthur Riel. Object-Oriented Design Heuristics. Addison Wes-
ley, Boston MA, 1996.

Headway Software.
http://www.headwaysoftware.com, 2010.
Sonar Source. Sonar. http://www.sonarsource.org/, 2010.
Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzi-
georgiou. Jdeodorant: Identification and removal of type-
checking bad smells. In Proceedings of the 2008 12th European
Conference on Software Maintenance and Reengineering, pages
329-331, Washington, DC, USA, 2008. IEEE Computer Society.
Adrian Trifu and Radu Marinescu. Diagnosing design problems
in object oriented systems. In Proceedings of 12th Working Con-
ference on Reverse Engineering (WCRE 2005), 7-11 November
2005, Pittsburgh, PA, USA, pages 155-164, Los Alamitos CA,
2005. IEEE Computer Society.

Adrian Trifu. Towards Automated Restructuring of Object Ori-
ented Systems. PhD thesis, Universitit Karlsruhe, 2008.
Alexandru Telea, Lucian Voinea, and Hans Sassenburg. Visual
tools for software architecture understanding: A stakeholder per-
spective. Software, IEEE, 27(6):46-53, 2010.

Ioana Verebi. Automation of complex design restructurings.
Master’s thesis, Politehnica University of Timisoara, 2009.

Eva van Emden and Leon Moonen. Java quality assurance by
detecting code smells. In Proc. 9th Working Conf. Reverse Engi-
neering, pages 97-107. IEEE Computer Society Press, October
2002.

Andreas Zeller. The future of programming environments: In-
tegration, synergy, and assistance. In 2007 Future of Software
Engineering, FOSE °07, pages 316-325, Washington, DC, USA,
2007. IEEE Computer Society.

Structure 101.

