
JPC: A Library for Modularising Inter-Language Conversion
Concerns between Java and Prolog

Sergio Castroa, Kim Mensa, Paulo Mourab

aUniversité catholique de Louvain, Belgium
bCenter for Research in Advanced Computing Systems, INESC-TEC, Portugal

Abstract

The number of approaches existing to enable a smooth interaction between Java and Prolog
programs testifies the growing interest in solutions that take advantage of the strengths of
both languages. Most of these approaches provide limited support to allow programmers to
customise how a Prolog artefact should be reified in the Java world, or how to reason about
Java objects on the Prolog side. The burden of creating a convenient mapping between
inter-language artefacts is left, however, to the user of the library. This is an error-prone
task since the appropriate mapping often depends on the particular context of usage. Al-
though some libraries alleviate this problem by providing higher-level abstractions to deal
with the complexity of converting programming artefacts between the two languages, these
libraries themselves are difficult to implement and evolve. This is caused by the lack of ap-
propriate underlying building blocks for modularising and managing Java-Prolog conversion
constructs. We therefore introduce a library intending to serve as a portable development
tool both for programmers willing to modularise context-dependent conversion constructs
in their Java-Prolog systems, and for architects implementing frameworks providing higher-
level abstractions for better interoperability between these two languages.

Keywords: Object-Oriented Programming, Logic Programming, Multi-Paradigm
Programming, Programming Language Interoperability, Separation of Concerns

1. Introduction

Several libraries and frameworks have been proposed in the past to enable both Java
programmers to call Prolog predicates and Prolog programmers to have access to Java’s
extensive set of libraries. In Castro et al. (2013, 2012) we presented a linguistic symbiosis
approach to facilitate the implementation of certain methods in a Java class using Prolog.
Our focus was on attaining a transparent and semi-automatic integration of Prolog within
the Java language by providing a simple mechanism for inferring the appropriate mappings

Email addresses: sergio.castro@uclouvain.be (Sergio Castro), kim.mens@uclouvain.be (Kim
Mens), pmoura@inescporto.pt (Paulo Moura)

Preprint submitted to WASDeTT June 10, 2013

between Java and Prolog artefacts. Default mappings were defined for typical scenarios and
a mechanism of customising these mappings, by means of annotations, was provided.

Although we accomplished our objectives, our framework was difficult to extend to other
customisation mechanisms (different from the built-in one based on annotations) and not
portable to Prolog engines other than the ones we targeted. In addition, our implementation
was hard to maintain. This was mainly because methods dealing with artefact conversions
(i.e., the mechanism defining how an artefact in one language should be represented into the
other) had to analyse a considerable amount of conditions to infer the appropriate conversion
to apply. This caused a high cyclomatic complexity in the implementation, aggravated by the
fact that the right conversion, as we demonstrated, often depends on a specific usage context.
Furthermore, conversion algorithms were often tangled with other unrelated concerns.

The present work builds upon the difficulties we faced and the lessons we learned. Its
outcome is a tool, inspired on the Gson library (Google Inc. (2012)) for modularising context-
dependent conversion concerns between inter-language artefacts.

This paper is structured as follows. In section 2 we discuss the intrinsic complexity of
Java–Prolog interaction, revisiting an example presented in a previous work. The architec-
ture and main components of our library are discussed in section 3. In section 4 we present,
using small examples, the core of our technique for modularising context-dependent conver-
sions between Java objects and Prolog terms. Section 5 discusses approaches that inspired
our technique. In section 6 we summarise our conclusions from the perspective of a tool
builder and outline our future work plans.

2. Java–Prolog Interaction Complexity

In Castro et al. (2013, 2012), we illustrated with an example the inherent complexity of
mapping between Java artefacts and Prolog terms. We revisit in this section some details of
this example to help explaining the nature of our problem. Our case study modelled a city
underground system, with stations, lines connecting stations, and the underground as the
objects of discourse. To facilitate the mapping between Java and Prolog artefacts, we use
Logtalk (Moura (2003)), an object-oriented logic programming language that is implemented
in Prolog. Logtalk is highly portable, allowing us to work with most Prolog implementations,
using LogTalk as middle-layer. An outline of the Logtalk station parametric object (Moura
(2011)) is shown in listing 1. The implementation of the public method connected/2 is
shown on line 4. This method answers stations directly connected to the receiver by means
of the line object received as second argument. The method delegates to the connected/3
method of the metro object (that is not shown here for brevity).

1 :− object (s t a t i on (_Name)) .
2 :− pub l i c ([connected /2 , . . .]) .
3
4 connected (S , L) :− s e l f (S e l f) , metro : : connected (Se l f , S , L) .
5
6 . . .%other Logtalk methods
7 :− end_object .

Listing 1: The station object in Logtalk

2

On the Java side, listing 3 shows an outline of a corresponding Station class. This
class has been implemented using JPL (Singleton et al. (2004)), a well-known library for
Java–Prolog interaction. This class defines how a Station instance should be represented on
the Prolog side by means of the method asTerm() (lines 5–7). In our example, a station is
represented in Prolog as a compound term using the functor station and an atom as single
argument representing the name of the station (line 6). The static method create(Term)
(lines 9–12) does the opposite: it defines how a station term defined on the Prolog side has
to be represented as a Java object. It takes the first argument of the term representing the
station’s name (line 10) and uses it to instantiate the station class (line 11). The method
connected(Line) (lines 14–27) returns a station connected to the receiver by means of the
line received as a parameter. First a term representing a Logtalk message is built on line
18. The arguments of this message are an unbound variable and the term representation of
the line object received as parameter (line 17). Then an object message is built on line 19.
Logtalk uses the ::/2 infix operator for sending a message to an object. Its left operand is
the receiver (in this case the result of invoking the asTerm() method) and the right operand
is a Logtalk message with its arguments. Thus, the query created on line 20 is interpreted
in Prolog as:

s t a t i on (station_name) : : connected (ConnectedStation , l i n e (line_name))

Listing 2: A Logtalk query

Once the query has been constructed, we request its first solution on line 21. The binding
for the variable sent as first argument to the Logtalk method is collected from the solution
on line 23. This variable has been bound to a Prolog term representing a station. On line
24 we create the Java representation of this station object and we return it on line 26.

1 public class Stat ion {
2 St r ing name ;
3 . . .
4 //mapping an instance of Station to a log i c Term
5 public Term asTerm () {
6 return new Compound(" s t a t i on " , new Term [] {new Atom(name) }) ;
7 }
8 //mapping a log i c Term to an instance of Station
9 public stat ic Stat ion c r ea t e (Term stationTerm) {

10 St r ing lineName = ((Compound) stationTerm) . arg (1) . name () ;
11 return new Stat ion (lineName) ;
12 }
13 //mapping a Java method to a Logtalk method
14 public Stat ion connected (Line l i n e) {
15 Stat ion connectedStat ion = null ;
16 St r ing stationVarName = "ConnectedStation " ;
17 Term [] arguments = new Term [] {new Var iab le (stationVarName) , l i n e . asTerm () } ;
18 Term message = new Compound(" connected " , arguments) ;
19 Term objectMessage = new Compound(" : : " , new Term [] {asTerm () , message }) ;
20 Query query = new Query (objectMessage) ;
21 Hashtable<Str ing , Term> so l u t i on = query . oneSo lut ion () ;
22 i f (s o l u t i o n != null) {
23 Term connectedStationTerm = so l u t i on . get (stationVarName) ;
24 connectedStat ion = cr ea t e (connectedStationTerm) ;
25 }
26 return connectedStat ion ;
27 }
28 . . . //other methods mapped to log i c routines
29 }

Listing 3: A Java class interacting with Prolog by means of JPL

3

As illustrated by this example, for each query, the programmer must write the necessary
code to convert multiple Java objects to a convenient Prolog term representation (e.g., lines
17 and 19) and to convert Prolog terms back to Java objects (e.g., line 24). As the correct
conversion may depend on the usage context, this is an error-prone activity, often difficult
to separate from the core logic of the problem the programmer is trying to solve. In the
next section we discuss our library that alleviates most of these problems.

3. Architecture of the library

In this section we describe the main components of our library. This discussion sets the
ground for introducing its features in section 4.

3.1. Reification of Prolog Data Types
Our library provides a set of classes reifying Prolog data types. These classes are inspired

by (and to certain extent equivalent to) term classes in the JPL library 1. For completeness,
we list the main classes here:

Term : An abstract Prolog term.
Atom : A sequence of characters representing a Prolog Atom.
Compound : A Compound term consisting of a name and a list of arguments.
IntegerTerm : A Prolog Integer term.
FloatTerm : A Prolog Float term.
Variable : A Prolog Variable term.
Query : The reification of a Prolog query with convenient methods for obtaining its solu-

tions, where each solution is a map of Prolog variable names to terms.

As in the JPL library, these term classes can be considered as a structured concrete syntax
for Prolog terms.

3.2. An Abstraction of a Prolog Virtual Machine
These classes implement an abstract Prolog Engine that is able to accept queries and

answer solutions employing our term representation. It is vendor-agnostic and requires a
driver to connect to a specific Prolog engine. Drivers can be built on top of existing Java–
Prolog libraries for the target Prolog engine. These libraries can be made available by the
Prolog engine provider (e.g., JPL) or by third parties (e.g., InterProlog: Calejo (2004)). A
complete detailed description of our abstraction of a Prolog virtual machine is outside the
scope of this paper.

1However, the semantics of certain equally named methods have been modified.

4

3.3. The Conversion Context
The core of our library is inspired by Google’s Gson library, which aims to provide a

high-level tool for conversions between Java objects and their JSon representation. In fact,
many aspects of our library can be regarded as a re-implementation of Gson in the domain
of Java–Prolog artefact conversions.

The primary class in our library is a conversion context, encapsulated by the Jpc class 2.
This context can be considered as a two–way conversion strategy for a set of Java Objects
and Prolog terms. In addition, it is immutable so it can safely be reused across multiple
conversion operations. Its main components are:

The converter manager : Responsible to convert a Java object to a Prolog term and
vice-versa.

The type solver : Resolves the Java type of a Prolog term.
The instantiation manager : Allows to customise the instantiations of abstract classes

or interfaces.

In order to facilitate the setup of these components in a Jpc instance, we provide a JpcBuilder
class with convenient configuration methods. For example, listing 4 shows how to configure a
builder to create a Jpc context that knows how to convert objects from the example discussed
in section 2. We will comeback to this example in the next section.

1 public stat ic f ina l Jpc jpcContext = JpcBui lder . c r ea t e ()
2 . r e g i s t e rConve r t e r (new MetroConverter ())
3 . r e g i s t e rConve r t e r (new LineConverter ())
4 . r e g i s t e rConve r t e r (new Stat ionConverter ()) . bu i ld () ;

Listing 4: Building a Jpc context with the JpcBuilder class

4. Modularizing Inter-Language Conversion Concerns

The Jpc class provides convenient methods to convert between Java and Prolog artefacts.
In the rest of this section we overview these techniques.

4.1. Primitives Conversions
In this section we illustrate how to map primitive types between Java and Prolog. The

simplest way to use our framework is by means of the toTerm(Object) and fromTerm(Term)
methods in the Jpc class. These methods require as a parameter the object to convert.

Listing 5 shows a list of successful assertions that illustrates some pre-defined conversions
of Java primitive types and strings to Prolog terms.

1 as s e r tEqua l s (new Atom(" true ") , jpc . toTerm(true)) ; //Boolean to Atom
2 as s e r tEqua l s (new Atom("c") , jpc . toTerm(' c ')) ; //Character to Atom
3 as s e r tEqua l s (new Atom("1") , jpc . toTerm("1")) ; //String to Atom
4 as s e r tEqua l s (new IntegerTerm (1) , jpc . toTerm (1)) ; // Integer to IntegerTerm
5 as s e r tEqua l s (new FloatTerm (1) , jpc . toTerm(1D)) ; //Double to FloatTerm

Listing 5: Conversions of primitive Java objects to Prolog terms

2Jpc stands from Java-Prolog-Connectivity.

5

Pre-defined conversions of Prolog terms to Java primitive types are shown in listing 6.

1 as s e r tEqua l s (true , jpc . fromTerm(new Atom(" true "))) ; //Atom to Boolean
2 as s e r tEqua l s ("c" , jpc . fromTerm(new Atom("c"))) ; //Atom to String
3 as s e r tEqua l s ("1" , jpc . fromTerm(new Atom("1"))) ; //Atom to String
4 as s e r tEqua l s (1L , jpc . fromTerm(new IntegerTerm (1))) ; //IntegerTerm to Long
5 as s e r tEqua l s (1D, jpc . fromTerm(new FloatTerm (1))) ; //FloatTerm to Double

Listing 6: Conversion of Prolog terms to primitive Java objects

Note that, f being our default conversion function from a Java object to a Prolog term,
and g our default reverse conversion function, it is not always the case that g(f(x)) = x,
where x is a Java primitive object. This is because there are more primitive types in Java
that in Prolog. Thus, distinct Java objects may be mapped by default to the same Prolog
term. For example, line 2 of listing 5 shows that the default conversion of the Java character
c is the Prolog atom c. However, the default conversion of the atom c is the String "c", but
this is not necessarily always what the programmer expects. The next section describes how
to give a hint to our library on the appropriate conversion that should be applied.

4.2. Typed Conversions
The conversion methods in the Jpc class can receive as a second parameter the expected

type of the converted object. Listing 7 shows examples of Java–Prolog conversions that
specify the expected Prolog term type. In line 1, the Integer 1 is converted to an Atom
instead of an IntegerTerm (as in listing 5, line 4). This is because we send the Atom class as
the second parameter of the conversion method. In line 2, the String "1" is converted to
an IntegerTerm.

1 as s e r tEqua l s (new Atom("1") , jpc . toTerm (1 , Atom . class)) ; // Ingeter to Atom
2 as s e r tEqua l s (new IntegerTerm (1) , jpc . toTerm("1" , IntegerTerm . class)) ; //String to IntegerTerm

Listing 7: Typed conversions of primitive Java objects to Prolog terms

In a similar way, listing 8 shows examples of Prolog–Java conversions that specify the
expected Java type.

1 as s e r tEqua l s (1 , jpc . fromTerm(new Atom("1") , I n t eg e r . class)) ; //Atom to Integer
2 as s e r tEqua l s ("1" , jpc . fromTerm(new IntegerTerm (1) , S t r ing . class)) ; //IntegerTerm to String
3 as s e r tEqua l s (" true " , jpc . fromTerm(new Atom(" true ") , S t r ing . class)) ; //Atom to String
4 as s e r tEqua l s (' c ' , jpc . fromTerm(new Atom("c") , Character . class)) ; //Atom to Character

Listing 8: Typed conversions of Prolog terms to primitive Java objects

4.3. Arrays, Collections, and Maps Conversions
Our library provides default conversions for multi-valued data types such as arrays,

collections, and maps.

1 Term term = jpc . toTerm(new Object [] { " apple " , 10}) ;
2 a s s e r tEqua l s (
3 new Compound(" . " , a sL i s t (new Atom(" apple ") , //equivalent to . (' apple ' , .(10 , []))
4 new Compound(" . " , a sL i s t (new IntegerTerm (10) ,
5 new Atom(" [] ")))))
6 , term) ;

Listing 9: Conversion of an array to a Prolog term

6

Listing 9 shows a conversion of an array object with a string and an integer element:
["apple", 10]. Its result is a Prolog term list having as elements an atom and an inte-
ger term: ['apple', 10].

Alternatively, we could have used a list instead of an array. We would have obtained ex-
actly the same result by replacing line 1 by: Term term = jpc.toTerm(asList("apple", 10));

A slightly more complex example is illustrated in listing 10. First, a Java map is instan-
tiated (lines 1–4). The default term conversion is applied on line 5, generating a Prolog list
with two key-value pairs: ['apple'-10,'orange'-20]. This result is tested on lines 7–8.

1 Map<Str ing , Integer> map = new LinkedHashMap<Str ing , Integer >() {{ //LinkedHashMap preserves insert ion
order

2 put (" apple " , 10) ;
3 put (" orange " , 20) ;
4 }} ;
5 Term term = jpc . toTerm(map) ;
6 List<Term> l istTerm = term . a sL i s t () ; //transforms a Prolog l i s t term into a l i s t of terms
7 as s e r tEqua l s (new Compound("−" , a sL i s t (new Atom(" apple ") , new IntegerTerm (10))) , l i s tTerm . get (0)) ;
8 a s s e r tEqua l s (new Compound("−" , a sL i s t (new Atom("orange ") , new IntegerTerm (20))) , l i s tTerm . get (1)) ;

Listing 10: Conversion of a map to a Prolog term

4.4. Typing Prolog Terms
When no type information is provided in a term-to-object conversion, our library will

attempt to give as hint to the converter manager an inferred type (if any) based on structural
properties of the term. For instance, by convention we assume (but this could be configured)
that a Prolog list of terms with certain properties should be reified as a map in Java. Listing
11 illustrates this by means of an example. On line 3 we create a list term from two previously
created compound terms. We convert it to a Java map on line 4 and test its structure on
lines 5 and 6. In this case, our library will infer that the type of the converted object should
be a Java Map, since the (default) type solver will analyse the structure of the term to convert:
[apple-10, orange,20] and will find that all of its elements are compounds with an arity
of 2 and with functor ‘-’, which are mapped by default to map entries (i.e., instances of the
Map.Entry class).

1 Compound c1 = new Compound("−" , a sL i s t (new Atom(" apple ") , new IntegerTerm (10))) ;
2 Compound c2 = new Compound("−" , a sL i s t (new Atom("orange ") , new IntegerTerm (20))) ;
3 Term l i s tTerm = l istTerm (c1 , c2) ; //creates a l i s t term from a l i s t of terms
4 Map map = jpc . fromTerm(l i s tTerm) ;
5 a s s e r tEqua l s (map . get (" apple ") , 10L) ;
6 a s s e r tEqua l s (map . get (" orange ") , 20L) ;

Listing 11: Conversion of a Prolog term to a map

Alternatively, we could have replaced line 4 by
List list = jpc.fromTerm(listTerm, List.class);
The type explicitly given by the programmer as a hint has higher priority that the one
inferred by the type solver. In this case, the result would have been a list of map entries
since the Prolog list would have been mapped to a Java list (i.e., an instance of a class
implementing List), but the default conversion of each term in the list (a compound with
arity 2 and functor ‘–’) is still a map entry object.

Listing 12 shows an extract of this type solver. It will return the Map class on line 13 if
it can conclude that the term looks like a map. If it is unable to assign a type to the term

7

it will return null on line 15. Note that this type solver may answer false negatives if it
does not have enough information (e.g., if the list term is empty). The programmer should
explicitly supply a type in case of ambiguities.

1 public class MapTypeSolver implements TermTypeSolver {
2 @Override
3 public Type getType (Term term) {
4 i f (term . i s L i s t ()) {
5 ListTerm l i s t = term . a sL i s t () ;
6 Predicate<Term> isMapEntry = new Predicate<Term>() {
7 @Override
8 public boolean apply (Term term) {
9 return isMapEntry (term) ;

10 }
11 } ;
12 i f (! l i s t . isEmpty () && I t e r a b l e s . a l l (l i s t , isMapEntry))
13 return Map. class ;
14 }
15 return null ;
16 }
17
18 private boolean isMapEntry (Term term) {
19 . . .
20 }
21 }

Listing 12: A type solver for a Prolog term representing a map

Additional type solvers can be added to a conversion context by means of the
registerTypeSolver(TermTypeSolver) method of the JpcBuilder class.

4.5. Instantiation Managers
When a type hint is given for a Prolog–Java conversion (either explicitly by the pro-

grammer or implicitly by the type solver) and a converter does not know the right way to
instantiate it (e.g., it is abstract or an interface), it can ask the instantiation manager for
an instance of the type. For example, in listing 12 we showed that a Prolog list with a
certain structure will be identified by the type solver as a Map. However, the type solver
does not provide any mechanism to instantiate such an interface, since its only responsi-
bility is to give a hint on the appropriate Java type. Converters may use the instantiation
manager to instantiate abstract types. An instantiation manager administers a collection of
instance creators, which are classes implementing the interface shown in listing 13. When
required to instantiate a type, it will iterate on the registered instance creators querying
their canInstantiate(Type) method. If one instance creator returns true, the manager will
return the result of invoking instantiate(Type) on the instance creator.

1 public interface Ins tanceCreator {
2 public <T> T in s t a n t i a t e (Type type) ;
3
4 public boolean can In s t an t i a t e (Type type) ;
5 }

Listing 13: The InstanceCreator interface

Instance creators can be added to a conversion context by means of the
registerInstanceCreator(InstanceCreator) method of the JpcBuilder class.

4.6. Conversion of Generic Types
Our library provides support for Java Generics. Consider the example in listing 14. A

Prolog list term is created on line 1. We use a utility class (from Google’s Guava library) to
8

obtain an instance of the parameterised type List<String> (line 2). Then we give this type
as a hint to the converter (line 3) and we verify on lines 4 and 5 that the elements of the
Java List are indeed instances of String, as it was specified on line 3.

1 Term l i s tTerm = l istTerm (new Atom("1") , new Atom("2")) ;
2 Type type = new TypeToken<List<Str ing >>(){} . getType () ;
3 List<Str ing> l i s t = jpc . fromTerm(l istTerm , type) ;
4 a s s e r tEqua l s ("1" , l i s t . get (0)) ;
5 a s s e r tEqua l s ("2" , l i s t . get (1)) ;

Listing 14: Specifying redundantly the target parameterised type in a conversion

In the previous example, the type passed to the converter was redundant, since elements
in the Prolog list are atoms, which are converted by default to instances of String in Java.
Consider, however, listing 15. The main change w.r.t. the previous example is that the type
we send as a hint is now List<Integer> (line 3). This instructs the converter to instantiate
a list where all its elements are integers, as demonstrated on lines 4 and 5.

1 Term l i s tTerm = l istTerm (new Atom("1") , new Atom("2")) ;
2 Type type = new TypeToken<List<Integer >>(){} . getType () ;
3 List<Integer> l i s t = jpc . fromTerm(l istTerm , type) ;
4 a s s e r tEqua l s (1 , l i s t . get (0)) ;
5 a s s e r tEqua l s (2 , l i s t . get (1)) ;

Listing 15: Changing the behaviour of the converter with a parameterised type

4.7. Custom Conversions
The previous examples have employed only pre-defined converters. Listing 16 shows the

StationConverter class. This class has two main methods to convert to (lines 4–6) or from
(lines 8–11) a Prolog term.

1 public class Stat ionConverter extends JpcConverter<Stat ion , Compound> {
2 public stat ic f ina l St r ing STATION_FUNCTOR = " s t a t i on " ;
3
4 @Override public Compound toTerm(Stat ion s ta t i on , Jpc context) {
5 return new Compound(STATION_FUNCTOR, a sL i s t (new Atom(s t a t i on . getName ()))) ;
6 }
7
8 @Override public Stat ion fromTerm(Compound term , Jpc context) {
9 St r ing stationName = ((Atom) term . arg (1)) . getName () ;

10 return new Stat ionJpc (stationName) ;
11 }
12 }

Listing 16: The StationConverter class

Using this converter, and the others shown in listing 4 to create a custom conversion
context, we re–visit the Station class shown in listing 3.

Listing 17 shows a new version of the Station class originally shown in listing 3. Using
our library, the connected(Line) method was reduced from 14 to 7 lines of code. In addition,
the methods asTerm() and create(Term) are not in the Station class anymore since they
have been encapsulated in a converter. Note that terms are easily created according to a
conversion context. In line 5, the last argument of the compound is an instance of Line. The
conversion of this object to a term is done automatically by our framework. Conversely, in
listing 3 (line 17), we were forced to invoke an explicit conversion when we requested the

9

term representation of the line object. The same applies in line 6, where the Station instance
denoted by the this keyword is automatically transformed to its term representation.

A Query object is instantiated on line 7 from an object abstracting a Prolog engine. Note
that this object can (optionally) receive a context. The advantage of making a query instance
aware of a conversion context becomes clear on line 8. To understand this, let’s recall from
section 3 that a Prolog solution is represented as a map binding variable names to terms.
On line 8, the invocation of the selectObject(String) method encapsulates the original
query in an adapter, where each solution of this query adapter is an object which term
representation is given in the argument of selectObject, taking into account the bindings of
any variables in the solution. In our example, the solution object is expressed as the Prolog
variable Station, which has been bound to a term representing an instance of Station. The
conversion of this term to a Station object is transparent and accomplished behind the
curtains by our library.

1 public class Stat ion {
2 . . .
3 public Stat ion connected (Line l i n e) {
4 St r ing stationVarName = " Stat ion " ;
5 Term message = jpcContext . compound(" connected " , a sL i s t (new Var iab le (stationVarName) , l i n e)) ;
6 Term objectMessage = jpcContext . compound(" : : " , a sL i s t (this , message)) ;
7 Query query = getPrologEngine () . query (objectMessage , jpcContext) ;
8 return query .<Stat ion>se l e c tOb j e c t (stationVarName) . oneSo lut ion () ;
9 }

10 }

Listing 17: A Java class interacting with Prolog by means of our library

5. Related Work

Most techniques and abstractions employed by our library were not invented from scratch
but taken from existing tools in other domains. In particular, Google’s Gson library and its
notion of a context were an important source of inspiration for accomplishing our two-way
conversions between Java and Prolog artefacts. In addition, although our abstract Prolog
engine was only briefly discussed in this paper, its core idea of decoupling a driver into a
common API and an engine-specific component has been extensively proven in scenarios
involving programs interacting with databases (e.g., JDBC).

In the domain of Java–Prolog connectivity, most classes reifying Prolog terms were in-
spired on the JPL library. Certain aspects of InterProlog were also inspiring for the design
of our class modelling a Prolog engine.

6. Conclusion and Future Work

The tool presented in this paper was originally designed as a portable library provid-
ing convenient functionality for a Java–Prolog linguistic symbiosis problem. We believe,
however, that it can be useful to programmers wanting to modularise and encapsulate con-
version concerns in Java–Prolog programs, given them a fine-grained control about how a
Java object can be reasoned about on the Prolog side, and which is the best representation
of a Prolog artefact in Java. It can also serve as a convenient building block for helping

10

architects in building efficiently more sophisticated frameworks (e.g., different to the one
presented in our previous work) for integrating Java and Prolog.

While building this tool we have profited from cross fertilisation of ideas from different
domains. We believe that tool design and implementation requires an attentive observation
of different domains where a similar problem may exist, perhaps with subtle variations. As
we have demonstrated, tool building can be an exercise of assembling a puzzle of abstractions,
where many pieces (possibly all) can be adapted from, or inspired on, well-proven existing
solutions.

Regarding future work, we plan to port the framework for linguistic symbiosis introduced
in Castro et al. (2013, 2012) to our library, thus simplifying its implementation. To improve
the Prolog–Java interoperability, we plan to develop a portable library on top of Logtalk for
simplifying the interaction from the Prolog perspective, as we have done on the Java side.
We also plan to extend support to Prolog compilers other than the currently supported
SWI–Prolog (Wielemaker et al. (2012)), YAP (Costa et al. (2012)) and XSB (Swift and
Warren (2012)).

Acknowledgements. This work is partially supported by the LEAP project (PTDC/EIA-
CCO/112158/2009), the ERDF/COMPETE Program and by FCT project FCOMP-01-
0124-FEDER-022701.

References

Calejo, M., 2004. InterProlog: Towards a Declarative Embedding of Logic Programming in Java. In: José
Júlio Alferes and João Alexandre Leite (Ed.), Logics in Artificial Intelligence, 9th European Confer-
ence, JELIA 2004, Lisbon, Portugal, September 27-30, 2004, Proceedings. Vol. 3229 of Lecture Notes in
Computer Science. Springer, pp. 714–717.

Castro, S., Mens, K., Moura, P., 2012. LogicObjects: A Linguistic Symbiosis Approach to Bring the Declar-
ative Power of Prolog to Java. In: Proceedings of the Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE’12).

Castro, S., Mens, K., Moura, P., January 2013. LogicObjects: Enabling Logic Programming in Java Through
Linguistic Symbiosis. In: Proceedings of the 15th International Symposium on Practical Aspects of Declar-
ative Languages (PADL). Rome, Italy.

Costa, V. S., Rocha, R., Damas, L., 2012. The YAP Prolog System. Theory and Practice of Logic Program-
ming 12 (1-2), 5–34.

Google Inc., Jul. 2012. Gson 2.2.2: A Java library to convert JSON strings to Java objects and vice-versa.
http://code.google.com/p/google-gson/.

Moura, P., Sep. 2003. Logtalk – Design of an Object-Oriented Logic Programming Language. Ph.D. thesis,
Department of Computer Science, University of Beira Interior, Portugal.

Moura, P., Apr. 2011. Programming Patterns for Logtalk Parametric Objects. In: Applications of Declarative
Programming and Knowledge Management. Vol. 6547 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, pp. 52–69.

Singleton, P., Dushin, F., Wielemaker, J., Feb. 2004. JPL 3.0: A bidirectional interface between Prolog and
Java. http://www.swi-prolog.org/packages/jpl/java_api/.

Swift, T., Warren, D., 2012. XSB: Extending the power of Prolog using tabling. Theory and Practice of
Logic Programming 12 (1-2), 157–187.

Wielemaker, J., Schrijvers, T., Triska, M., Lager, T., 2012. SWI-Prolog. Theory and Practice of Logic
Programming 12 (1-2), 67–96.

11

http://code.google.com/p/google-gson/
http://www.swi-prolog.org/packages/jpl/java_api/

	Introduction
	Java–Prolog Interaction Complexity
	Architecture of the library
	Reification of Prolog Data Types
	An Abstraction of a Prolog Virtual Machine
	The Conversion Context

	Modularizing Inter-Language Conversion Concerns
	Primitives Conversions
	Typed Conversions
	Arrays, Collections, and Maps Conversions
	Typing Prolog Terms
	Instantiation Managers
	Conversion of Generic Types
	Custom Conversions

	Related Work
	Conclusion and Future Work

