
TALE: Tool for Application Logic Extraction

Kamil Rybiński, S lawomir Blatkiewicz, Norbert Jarze�bowski, Wiktor
Nowakowski, Micha l Śmia lek

Warsaw University of Technology, Warsaw, Poland

Abstract

Developing a new software system based on legacy software can be quite
hard and labor-intensive. The main issue is to preserve the essential ap-
plication and business logic – normally resolved in a manual process. The
presented tool suite automates capturing essential knowledge on the appli-
cation logic of legacy systems by recording their observable behaviour. The
recovered knowledge is represented with use case scenarios having precise
sentences describing user-system interactions. The tool suite has a hetero-
geneous architecture and is composed of several Eclipse-based applications.
The central idea is to use a standard test automation system to capture test
scripts and then translate them into constrained natural language scenarios
that are machine processable. This allows for further automatic transfor-
mations even down to code. The paper presents the tool design details and
experience gained during its development.

1. Introduction and related work

In this paper we present a tool for extracting application logic informa-
tion from legacy systems to facilitate further easy migration into new system
design. Application logic carries information about the user-system dialogue
in relation to domain-specific data processing and platform-specific user in-
terface appearance. In our solution, such information can be extracted from
any legacy system by determining its observable behaviour. This information
can then be stored in the form of requirements-level models written in the
Requirements Specification Language which has precise formal specification
of its syntax [1]. These models can be then transformed into architectural
and design-level models or even into code.

Preprint submitted to Elsevier June 7, 2013



Figure 1: Overview of the recovery process

The recovery process is illustrated in Figure 1. The legacy system is
subject to “UI ripping” (recording the observable behaviour) as available
in test automation tools. This produces test scripts in the XML format.
The scripts are processed by the TALE tool developed within the REMICS
project (www.remics.eu). This automated process results in RSL models that
can be further manually refined in the ReDSeeDS tool (www.redseeds.eu).
This process was described in detail by Nowakowski et al. [2]. It can be
also compared to that proposed by Hungar et al. [3]. However, this solution
generates low-level state models and is limited to recovery of telecommuni-
cation systems and concentrated on generating test cases. Here we present
the details of the TALE tooling environment that is suitable for a wide range
of business systems which exhibit high intensity of user-system interactions.
The models generated by TALE are suitable for further transformation into
modern technology code, at the same time preserving the application logic
of the legacy system.

It can be noted that most solutions to knowledge recovery from legacy
systems concentrate on retrieving code or detailed design artifacts. This
was formalised through the introduction of the Knowledge Discovery Meta-
model [4], with MoDisco (www.eclipse.org/modisco) and Netfective Blu Age
(www.bluage.com) being one of its first implementations. Other approaches
include data analysis solutions like Data Reverse Engineering [5] or Database
Reverse Engineering [6]. According to our best knowledge there are no similar
solutions where application logic is recovered based on observable behaviour.
Most work regarding reverse engineering of (graphical) user interfaces con-
centrate on testing purposes (see eg. work by Memon et al. [7]) and direct
migration into new user interface technology (see eg. Stroulia et al. [8]).
In the presented solution, the application logic is recovered in the form of
requirements-level scenarios that facilitate discussion on the possible changes
in functionality. By contrast, there seem to be no other advanced tools that
focus on requirements recovery. Sparse examples include work by Fahmi and
Choi [9] and the RETR initiative [10]. However, there seems to be no toolkit
that supports these ideas. Recently, an approach by Repond et al. [11] pro-
poses to formulate the recovered system knowledge in the form of use cases.
Though, in contrast to the TALE tool, it does not offer any means to auto-

2



Figure 2: Recording a GUI interaction scenario

Figure 3: Translating from a GUI recording to requirements in RSL

mate the recovery of scenarios. Some approaches, like the one by Bertolino
et al. [12] propose synthesizing behaviour protocols that contain similar in-
formation to that of use case scenarios. However, this is based on using the
existing implementation artifacts or design models, while our approach is
independent on any “internals” of the legacy system.

2. Tool suite requirements and pre-existing components

To capture legacy application logic we need to process and store infor-
mation on all the significant paths through the user interface, including ex-
ceptional behavior (eg. entering invalid data, operation cancellation). Thus,
the important requirement of the new tool suite is to be able to record all
the possible user-system interaction paths of a legacy system. One of such
paths is illustrated in Figure 2. Here we can see a short scenario for entering
a new book entry using the JabRef reference manager. We would thus want
to “play-out” many such scenarios through normal usage of the system and
record their steps and data exchanged with the user (cf. UI ripping). It can
be noted that such recording is present in typical test automation tools.

The above requirements led to choosing Rational Functional Tester (RFT)
[13]. Its main purpose is automation of functional and regression testing.
Capturing and simulation of user actions can be performed for various user
interface styles and technologies. The captured functionality (“test scripts”)

3



is editable and presented together with the UI screens. RFT uses an ob-
ject map between the script and the application under test, thus providing
detailed information about data objects engaged in the interactions. The
test scripts and objects can be exported into machine processable scripts in
XML. This is illustrated in Figure 3 (upper half) where the XML file contents
reflect the scenario and the data (the book title) from Figure 2.

There were also made attempts to utilise other test automation tools,
but none of them met the presented requirements as fully as RFT. They
capture only some details of the user-system interaction or store the captured
information in a form difficult to process. HP Unified Functional Testing
software [14] and SmartBear TestComplete [15] are some examples of the
analysed tools. Unfortunately, the extent and form in which the captured
objects are stored by these tools were not satisfactory for the recovery process.
There were also additional problems with the range of supported languages
and technologies. For example, we could not use tools such as Selenium [16]
because they only support browser-based applications.

Test scripts recorded by RFT need further processing. Their purpose is
not to capture application logic units but to capture linear paths through the
system behaviour for further repeated automatic test execution. Thus, the
new tools should be able to translate and merge such scripts into coherent
human-readable high-level models representing units of application logic. It
can be noted that this can be very well packaged into familiar use cases with
their potential to be processed by the techniques of Model Driven Engineer-
ing (see eg. work by Astudillo et al. [17]). What is also needed is means to
store the use case scenarios as models. This is offered by the Requirements
Specification Language which is unique through its very detailed metamodel.
Moreover, RSL has a comprehensive and mature tool suite - the ReDSeeDS
Engine [18]. Thus, the new tools should be able to create RSL models based
on the recorded test automation scripts. This is illustrated in Figure 3. The
scenario from Figure 2 is now translated from an XML file into a use case
scenario containing 5 simple subject-verb-object sentences. This is supple-
mented by a domain model containing information on windows (e.g. “New
book window”) and associated data (e.g. “New book data”).

Such translation should be done automatically. Moreover, it should be
possible to merge several similar scenarios into use cases. The tool should
also support modification and correction of the translation results. This is
particularly important in situations where the person recording the scripts
did not properly perform recording actions (eg. made the wrong choice for

4



Figure 4: Elements of the script structure important for translation

the script beginning and end points). Therefore, the tool should provide
features for dividing and merging scripts to properly reflect the use case
goals.

In summary, the analysis resulted in selecting RFT and ReDSeeDS Engine
as the first and last component in the recovery path. What was still necessary
to develop was the tool to transform test-related scripts into application logic
units (use cases with scenarios). This resulted in constructing TALE - Tool
for Application Logic Extraction, as presented in the further sections. It
should be noted that both RFT and ReDSeeDS were developed within the
Eclipse framework, and thus it was a natural choice also for TALE.

3. TALE design issues

3.1. Interfacing with RFT

Understanding the RFT script structure is fundamental to proper extrac-
tion of information. Each script is an XML file containing activities grouped
by the UI elements in which they have occurred. To understand its struc-
ture and prepare for transformation into RSL, the RFT script “language”
has been reverse engineered into a metamodel. Its simplified structure is
presented in Figure 4. The scripts are composed of test element groups (cf.
TestElements). Every recorded window has its xsl:type set to TopLevel-
WindowGroup. Each element of this kind holds a reference to its descrip-
tion stored separately in a list of all windows (cf. TopLevelWindow). A
window contains elements that the user has interacted with, typed as Prox-
yMethods. Each such method has an Action - a click, a text input or key
press. Actions have Arguments which refer to TestElements that spec-
ify action attributes and values (e.g. entered text or pressed keys). At the
window group or window element representation level, there can exist test
elements typed as ScriptMethods which represent calls to other scripts.

5



Figure 5: RFT to RSL transformation algorithm (simplified)

Test script recording also results in creating special structures (separate
XML files, called object maps) containing objects with information on data
elements and its types exchanged with the user. For brevity we will not
present their structure here.

3.2. RFT script to RSL transformation

The recorded RFT scripts in XML format are parsed and transformed into
a model compliant with the RSL metamodel. This model is stored within
the ReDSeeDS repository (model storage) that is based on the JGraLab [19]
technology. Since this repository is graph-based, this step involves creating
a graph structure. From the user point of view, the translation results in a
series of simple RSL sentences, user interface elements and domain concepts
reflecting the contents of the XML file, as illustrated in Figure 3.

The transformation algorithm was coded in plain Java using a standard
XML parser library (see Section 3.4) and the JGraLab API. Its overview
is presented in Figure 5. The algorithm is based on gathering information
from consecutive TopLevelWindow groups. For each of such groups, a win-
dow presentation sentence is generated (cf. sentences 2 and 4 in Fig. 3).
Furthermore, each element under the current top level window is processed.
The recorded user actions referenced by these elements result in generating
either UI element selection sentences (cf. sentence 3), or data input sentences
(cf. sentence 5). For the latter situation, the associated Object Map file is
parsed and sought for associated data objects. Based on this, appropriate
RSL domain elements (notions) are generated.

It can be noted that the target sentences observe a simple subject-verb-
object format (sometimes with two objects). The rule is that the subject is
set to system for the window display sentences. In other cases the subject
is set to user. The verb is set to select for the selection or button pressing
sentences; enter is used for the data input sentences and show is used for the
window display sentences. The sentence objects are set to either window,

6



Figure 6: Sample window of the TALE tool

button or domain elements. The object name is taken from the source script
and an appropriate postfix is added (cf. “Book window” vs. “Book data”).

As mentioned above, before any data input sentence (cf. sentence 5)
is added, a domain notion (cf. domain concept), representing this data, is
created. All the input data element types are identified inside the proper
Object Map file and marked with appropriate data types. They are then
added to the domain specification (cf. the “Book data” element). All the
associated primitive values from the map are set as the domain notion’s
attributes.

The full transformation results in creating a scenario for each of the RFT
scripts. For all the scenarios, a single domain model is created that contains
all the domain notions, window elements and button elements linked through
associations (cf. Fig. 3, bottom right).

3.3. Scenario management

After RFT script processing, it should be possible to manipulate the
RSL scenarios to construct complete and coherent use case models to reflect
the observable functionality of the legacy system. This is performed in a
special scenario editor, as illustrated in Figure 6. The recovered scenarios
are displayed in the Unassigned scenario list (see bottom-right). These
scenarios are not yet related to any use case. The TALE user can group them
into use cases by creating new use cases or appending to already existing ones.
When attaching to a use case, the user can choose a reference scenario and
point to a correct joining place. This also adds condition sentences to both
scenarios. The previously (possibly erroneously) attached scenarios can also
be detached back to the unassigned scenario list. The user can also delete
scenarios from the list, join them or split them. It is also possible to move
scenarios between use cases, merge use cases or notions and automatically
find common scenario fragments. This last feature uses in its implementation

7



Figure 7: TALE main architectural components

the Rabin-Karp algorithm [20] for detecting same scenario fragments. Single
sentences act as string patterns.

Figure 6 illustrates the package structure of the edited model, maintained
within the tool. Some packages contain the created use cases, some contain
the domain notions (see left). The scenarios and domain notions can be
further edited and extended according to newly emerging requirements (see
top-right). It can be noted that the example uses a real-life system from
Poland, and the retrieved data is partially in Polish.

3.4. Technology and architecture

TALE was implemented as an extension for the ReDSeeDS tool, within
the framework of Eclipse Rich Client Platform (RCP). The test script parsing
algorithm implementation uses the Xerces Java Parser – an XML parser
from Apache Xerces [21]. Worth noting is the possibility to switch between
TALE and ReDSeeDS (arranged as perspectives) seamlessly since both tools
are integrated within a single framework and they share the common RSL
data model. Additionally, TALE uses GMF plug-ins for handling graphical
diagrams with the underlying EMF model [22] modified to serve as a proxy
layer for the JGraLab model.

The general structure of the tool components (Java plug-ins) is shown
in Figure 7. The relevant ReDSeeDS components are marked red (darker)
and the TALE plug-ins are marked green (lighter). Generally, the sys-
tem is functionally divided into domain logic and application logic (com-
bined with the UI). The domain logic is handled by two components: red-
seeds.scl.model implements the original RSL metamodel (part of a broader

8



Figure 8: Illustration of three main steps of the recovery process

SCL metamodel); remics.recovery.model implements script processing and
transformation, communicating frequently with redseeds.scl.model. The main
TALE observable functionality, as presented in the previous two subsections,
is contained in two application logic components: remics.script.loader and
remics.recovery.manager. These two components are supported by the RSL
editor (redseeds.editor.rsl) and the project tree manager (cf. redseeds.engine
and remics.engine). The navigator.listener component supplements this
functionality by reacting to changes in UI elements and updating the current
model.

4. Case study example

The presented toolkit has been validated through recovering a non-trivial
commercial system in the bank loan management domain. The system, called
SZOK, has been developed by a Polish major software provider Infovide-
Matrix, and was discontinued from further development a couple of years
ago. The recovery process resulted in creating more than 50 full use cases,
each with 2 or more scenarios. An example, pertaining to one of the use

9



cases, is presented in Figure 8.
During normal usage of the SZOK system, the flows of interaction were

recorded using RFT. Illustration in Figure 8a shows an example of such inter-
action leading from selecting a menu option (Klienci → Wyszukaj; Clients →
Search) to obtaining a list of matching clients (with a possible “detour” for
invalid entered data). In the next step of the recovery process, the TALE tool
has transformed the recorded scripts into an initial RSL model. This model
was then manually “wired up” so that individual scenarios were connected
into full use cases. Figure 8c shows the automatically generated and manu-
ally connected scenario, reflecting the user-system interaction illustrated in
Figure 8a.

It can be noted that the TALE tool also re-creates the domain model
containing domain notions and UI elements used in the recovered scenarios.
What is important, the tool is able to extract information about the com-
position of notions. Such notions aggregate attributes for every entry field
from the respective forms. This is illustrated in Figure 8b which contains an
automatically generated domain and user interface element model recovered
from the recorded interaction. For example, from the “Client search” (pol.
“Wyszukiwanie klienta”) window, the tool generates the “physical person”
(pol. “osoba fizyczna”) data notion that aggregates six attributes present in
the form.

The final step is to refine the RSL model to cater for possible modifications
and extensions to the system’s functionality. Often, the domain model needs
manual refactoring due to required renaming of recovered notion names. This
is done in the ReDSeeDS perspective of our tool suite and is illustrated in
Figure 8c (some notions renamed and several scenarios “wired” to compose
for the “Wyszukanie klienta” / “Client search” use case).

5. Discussion and conclusion

The development of the TALE tool took around 20 man-months. The
team consisted of the authors of this paper. The effort involved appropriate
research and implementation of the RFT-to-RSL transformation algorithm
and the scenario management editor. The tool is a crucial element of wider
research to develop an effective method to migrate legacy systems to modern
technologies. It has to be stressed that the requirements models generated
and managed within the tool can be further used to generate code in a wide
range of technologies [23]. The current results show that full (dynamic) code

10



of the upper layers (view, controller/presenter in MVC/MVP architectures)
can be automatically generated. The only disadvantage is that the data pro-
cessing layer (model in MVC/MVP) has to be migrated using other methods.

The effort associated with migrating legacy applications using TALE is
concentrated in recording and merging user-system interaction scenarios.
This would involve instructing regular users of the legacy system to cover
all the paths that are intended for migration. Then, the recorded paths
would need to be merged into use cases. It can be noted that in contrast
to typical reverse-engineering methods, the above activities do not involve
workforce with advanced skills. Further generation of the new system is fully
automatic. In summary, the “manual” effort to migrate a system consists of
three elements: playing out scenarios + merging scenarios into use cases +
updating the generated system with data processing/storage algorithms. In
case of lack of legacy documentation and/or lack of legacy source code, this
approach seems to be the only economical solution. Also, in case when the
legacy source code is available, its re-engineering might often be very difficult
(cf. GOTO statements in legacy code etc.) and thus not economical.

In regard to implementation of TALE, several interesting observations can
be emphasised. The plug-in architecture of RCP has significantly facilitated
interfacing and reusing the ReDSeeDS components. Overall, the Eclipse en-
vironment provided a coherent workspace for the project, despite significant
learning curve associated with its various elements. A prominent example is
the GMF/EMF framework [22] used to develop the graphical model editors.
It allowed us to quickly transform a metamodel (like the one shown in Fig. 4)
into a rich graphical editor. Still, GMF/EMF lacks satisfactory documenta-
tion which leads to quite significant overhead associated with mastering this
environment. Moreover, in the context of ReDSeeDS, we have experienced
overhead due to incompatibility between the EMF and the JGraLab storage.
On the other hand, JGraLab has proven to be a very efficient and easy to
apply model repository system. It provides a very rich low-level API with
additional high-level wrappers for common complex tasks.

The ultimate goal for the research around TALE is certainly very prac-
tical. It can be noted that the tool can recover the logic of practically any
software system in respect to its observable behaviour. This makes the tool
completely independent of the legacy system’s internals (often very “twisted”
and not recoverable by other means). It can be noted that TALE can be eas-
ily interfaced with other (G)UI ripping tools. This would necessitate changes
only to the remics.recovery.model component that currently processes RFT

11



scripts (XML). This gives vast possibilities for recovering application logic
for various types of user interfaces and technologies.

Acknowledgment This research has been carried out in the REMICS
project (http://www.remics.eu) and partially funded by the EU (ICT-
257793 under the 7th Framework Programme).

References

[1] H. Kaindl, M. Śmia lek, P. Wagner, et al., Requirements Specification
Language definition, Tech. Rep. D2.4.2, ReDSeeDS Project (2009).

[2] W. Nowakowski, M. Smialek, A. Ambroziewicz, N. Jarzebowski,
T. Straszak, Recovery and migration of application logic from legacy
systems, Computer Science 13 (4) (2012) 53–70.

[3] H. Hungar, T. Margaria, B. Steffen, Test-based model generation for
legacy systems, in: IEEE International Test Conference (ITC), IEEE
Computer Society, Charlotte, NC, 2003, pp. 971–980.

[4] R. Pérez-Castillo, I. G.-R. de Guzmán, M. Piattini, Knowledge Dis-
covery Metamodel-ISO/IEC 19506: A standard to modernize legacy
systems, Comput. Stand. Interfaces 33 (6) (2011) 519–532.

[5] P. Aiken, Reverse engineering of data, IBM Systems Journal 37 (2)
(1998) 246–269.

[6] J.-L. Hainaut, M. Chandelon, C. Tonneau, M. Joris, Contribution to a
theory of database reverse engineering, in: Reverse Engineering, 1993.,
Proceedings of Working Conference on, 1993, pp. 161–170.

[7] A. M. Memon, I. Banerjee, A. Nagarajan, GUI ripping: Reverse engi-
neering of graphical user interfaces for testing, in: Proceedings of the
10th Working Conference on Reverse Engineering, 2003, pp. 260–269.

[8] E. Stroulia, M. El-Ramly, P. Iglinski, P. Sorenson, User interface reverse
engineering in support of interface migration to the web, Automated
Software Engineering 10 (3) (2003) 271–301.

[9] S. Fahmi, H.-J. Choi, Software reverse engineering to requirements, in:
Proc. Int. Conf. Convergence Inform. Technol., 2007, pp. 2199–2204.

12



[10] Y. Yu, J. Mylopoulos, Y. Wang, S. Liaskos, A. Lapouchnian, Y. Zou,
M. Littou, J. Leite, RETR: Reverse engineering to requirements, in:
Reverse Engineering, 12th Working Conference on, 2005, p. 234.

[11] J. Repond, P. Dugerdil, P. Descombes, Use-case and scenario metamod-
eling for automated processing in a reverse engineering tool, in: Proc.
4th India Software Eng. Conf., ISEC ’11, 2011, pp. 135–144.

[12] A. Bertolino, P. Inverardi, P. Pelliccione, M. Tivoli, Automatic syn-
thesis of behavior protocols for composable web-services, in: Proc. 7th
ESEC/FSE ’09, 2009, pp. 141–150.

[13] C. Davis, D. Chirillo, D. Gouveia, et al., Software Test Engineering with
IBM Rational Functional Tester: The Definitive Resource, 1st Edition,
IBM Press, 2009.

[14] HP Unified Functional Testing page, http://www.hp.com/go/uft.

[15] SmartBear TestComplete page, http://smartbear.com/products/

qa-tools/automated-testing-tools.

[16] Selenium home page, http://docs.seleniumhq.org/.

[17] H. Astudillo, G. Génova, M. Śmia lek, J. Llorens Morillo, P. Metz,
R. Prieto-Diáz, Use cases in model-driven software engineering, Lecture
Notes in Computer Science 3844 (2006) 262–271.

[18] M. Smialek, T. Straszak, Facilitating transition from requirements to
code with the ReDSeeDS tool, in: Requirements Engineering Conference
(RE), 2012 20th IEEE International, IEEE, 2012, pp. 321–322.

[19] JGraLab project home page, https://github.com/jgralab.

[20] R. M. Karp, M. O. Rabin, Efficient randomized pattern-matching algo-
rithms, IBM Journal of Res. and Dev. 31 (2) (1987) 249–260.

[21] Apache Xerces project page, http://xerces.apache.org/.

[22] R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit, Addison-Wesley, 2009.

[23] M. Smialek, N. Jarzebowski, W. Nowakowski, Translation of use case
scenarios to Java code, Computer Science 13 (4) (2012) 35–52.

13


